РАДИОЭЛЕКТРОННЫЕ УСТРОЙСТВА

         

ДЕТЕКТОРЫ


Детектирование является процессом, обратным модуляции. Возможны три вида детектирования: амплитудное, частотное и фа­зовое. Кроме этого существует синхронное детектирование, которое в равной степени может быть применено для любого вида модуля­ции. При синхронном детектировании осуществляется процесс пере­множения входного сигнала с опорным. Опорный периодический сигнал может носить как гармонический, так и релейный характер. Большое распространение получил релейный вид опорного сигнала.

Несинхронное детектирование не требует дополнительного сиг­нала. При таком детектировании каждый вид модуляции требует свою преобразующую схему. Амплитудное детектирование осуществ­ляется с помощью выпрямительного диода. Частотное детектирова­ние требует предварительного преобразования ЧМ колебаний в AM, например, с помощью колебательного контура, резонансная ча­стота которого расстроена относительно частоты высокочастотного сигнала, с дальнейшим амплитудным детектированием. Аналогичную структуру имеют фазовые детекторы, с той лишь разницей, что для преобразования ФМ колебаний в AM используется, например, RС-цепь.

Простые детекторы имеют ряд существенных недостатков, ко­торые заставляют усложнять схему детекторных устройств. Для AM сигнала существенные ограничения возникают из-за порога от­крывания выпрямительного диода. По этой причине чувствитель­ность детектора получается низкой. Применение транзисторов и ОУ значительно увеличивает динамический диапазон детектора. Необ­ходимость точного преобразования малых сигналов связана со все-расширяющимся использованием в радиоэлектронных устройствах микросхем и соответствующим снижением уровней рабочих сиг­налов.

Расстроенный одиночный контур, используемый в ЧМ детекто­рах, имеет ограниченный линейный участок. Для расширения ли­нейного участка возможно применение двух расстроенных контуров, но и в этом случае выходная характеристика детектора оставляет желать лучшего. В последнее время в качестве частотного детек­тора применяются дифференцирующие схемы.
Амплитуда выходного гармонического сигнала в этих схемах прямо пропорциональна ча­стоте входного сигнала.

Детектирование ФМ сигналов не отличается принципиально от детектирования ЧМ сигналов. Здесь могут применяться те же ме­тоды, что и при детектировании ЧМ колебаний.

Общим детектором для всех видов модуляции является синхрон­ный детектор. Перемножение входного сигнала с опорным форми­рует на выходе синхронного детектора сигнал, несущий информацию об изменении амплитуды, частоты и фазы входного сигнала. Пусть UBX. = A (t)cos[w0t+f (t)] и Uоп = соsw0t. Выходной сигнал описы­вается выражением



После фильтрации высокочастотных составляющих получим Uвыx = = A(t)cosf(t) /2 Здесь при A(t)=const и f(t)=ф(t) получим Uвых = cos ф (t) — фазовый детектор, для f(t) =Qt — частотный де­тектор, а для f (t) = const Uвых==A(t)/2 — амплитудный детектор. Установка рабочего режима ОУ, который используется в устрой­ствах, показана в гл. 1.

1. ДВУХПОЛУПЕРИОДНЫЕ ДЕТЕКТОРЫ

Измерительный детектор. Детектор (рис. 8.1, а) измеряет дей­ствующее значение переменного сигнала с частотами более 500 кГц. Малое падение напряжения на базо-эмиттерном переходе в тран­зисторе позволяет измерять сигналы с амплитудой от 50 мВ. Вход­ное сопротивление схемы для положительной полуволны сигнала больше 100 Ом, а для отрицательной полуволны — более 2 кОм. На рис. 8.1,6 проиллюстрирована зависимость показаний измеритель­ного прибора от входного сигнала.



                                          Рис. 8.1

Детектор с большим динамическим диапазоном. Детектор (рис. 8.2) осуществляет преобразование входных сигналов с амп­литудами от единиц милливольт до 5 В. Кроме детектирования схема осу­ществляет усиление преобразованного сигнала. Регулировка усиления выпол­няется с помощью резистора R2. Коэф­фициент усиления может меняться от единицы до нескольких тысяч.

При действии на входе сигнала положительной полярности на выходе ОУ DA2 формируется сигнал также по­ложительной полярности, причем диод VD4 будет закрыт, а диод VD3 откры­вается и к выходу подключается рези­стор R2. С этого резистора на инверти­рующий вход ОУ DA2 подается сигнал ООС.


Отрицательная полярность вход­ ного сигнала проходит через усилитель DA2 и открывает диод VD4. По сигна­лу отрицательной полярности ОУ работает в режиме повторителя сигнала. Через резистор R2 отрица­тельный сигнал поступает на вход ОУ DA1. На его выходе фор­мируется сигнал положительной полярности, который проходит через диод VD2 на выход схемы. Коэффициент передачи для этой полуволны входного сигнала также устанавливаемся резистором R2. В детекторе можно применить различные типы интегральных микросхем.



Чувствительный детектор. Детектор (рис. 8.3, а) имеет ччвст-вительность 0,2 мВ. При этом сигнале постоянная составляющая на входе равна 3 мВ. Передаточная функция детектора показана на графике рис. 8.3,6. Коэффициент усиления детектора меняется с амплитудой входного сигнала. Для сигнала более 10 мВ коэффици­ент усиления превышает 103. Эти характеристики детектора получа­ются за счет того, что транзистор VT2, который детектирует сиг­нал, находится под плавающим пороювым напряжением. При от­сутствии сигнала постоянное напряжение коллектор — база транзи­стора VT1 соответствует напряжению, которое открывает VT2, и равно примерно 0,6 В. Входной сигнал, усиленный транзистором VT1, управляет работой второго транзистора. Положительная по­луволна входного сигнала закрывает транзистор VT2, а отрица­тельная полуволна открывает. Выходной сигнал транзистора VT2 поступает в базу следующего транзистора, который уменьшает вы­ходное сопротивление детектора и увеличивает его чувствитель­ность. Для создания смещения на транзисторе VT3 служит рези­стор R4. С помощью резистора R6 компе нрчется коллекторный ток транзистора VT3 при отсутствии входного сигнала. На графике рис. 8.3, б приведена зависимость постоянного выходного напряже­ния от напряжения на входе.



          Рис. 8.2

Детектор на ОУ. Детектор на ОУ (рис. 8.4. а) обеспечивает эквивалентное уменьшение прямого паления напряжения на выпря­мительных диодах до 1000 раз.


За счет этого достигается точное соответствие между амплитудой входного переменного напряжения и выходным постоянным напряжением. Эта схем? обеспечивает де­тектирование сигналов с амплитудой в несколько милливольт Однако при малых уровнях входного сигнала точность схемы ухуд­шается, что связано с влиянием ограниченного усиления, наличием смещения и его температурного дрейфа и т. п. на выходные харак­теристики де1сктора. Kpove того, сказывается разброс прямою падения напряжения на диодах. В некоторой степени влияние этих причин можно уменьшить, если применить сднополупернодное вы­прямление (рис. 8.4,6). Постоянный уровень на выходе интеграль­ной микросхемы можно скомпенсировать подстройкой сопротивле­ния резистора R2 или балансировкой ОУ (см. гл. 1). Детекторы работают на частотах не выше 10 кГц.



                                          Рис. 8.3



                                          Рис. 8.4

Детектор с ограниченной полосой частот. Схема детектора (рис. 8.5) обеспечивает детектирование сигналов с малой амплиту­дой в частотном диапазоне от 3 до 15 кГц. По постоянному току ОУ имеет коэффициент усиления, равный 2, а по переменному сигналу — 100. Полоса пропускания ОУ ограничена емкостью кон­денсаторов С1 и С2, что способствует уменьшению шумового сиг­нала на выходе. Кроме того, из-за малого усиления по постоянному току снижены температурные и временные дрейфы ОУ.

Двухполупериодный детектор. Детектирование осуществляется детектором на ОУ DAJ, который разделяет положительные и отри­цательные полуволны входного сигнала (рис. 8.6). Поскольку со­противления открытых диодов разные, то необходим подбор рези­стора R3, которым добиваются равенства сигналов на входах уси­лителя DA2. Второй усилитель объединяет полуволны входного сиг­нала и усиливает их в 10 раз. На выходе схемы присутствует сигнал положительной полярности. Схема осуществляет детектиро­вание сигналов от 10 мВ при 1 В на выходе. Чувствительность де­тектора можно повысить, если увеличить коэффициент усиления обоих усилителей, однако при этом уменьшается верхняя граничная частота детектора.


Частотный диапазон детектора определяется ча­ стотными свойствами используемых ОУ. Интегральные микросхемы К140УД1 позволяют получить граничную частоту свыше 1 МГц, а микросхема К153УД1 — 100 кГц.



                   Рис. 8.5                        Рис. 8.6

2. ДЕТЕКТОРЫ ВЧ СИГНАЛОВ

Линейный детектор. В основу детектора (рис. 8.7, а) поло­жена микросхема К122УД1. Нагрузкой этой микросхемы являются два транзистора, которые работают на общий сглаживающий фильтр f$3, C2. При наличии входного сигнала транзисторы VT1 и VT2 поочередно открываются. Детектор работает в широком диапазо­не частот. Выходная характеристика (рис. 87,6) снята на часто­те 100 кГц.

Детектор с АРУ. Схема (рис. 8.8, а), построенная на интеграль­ной микросхеме К224ЖАЗ, предназначена для детектирования AM-сигналов промежуточной частоты и усиления напряжения АРУ На вход интегральной микросхемы подается сигнал с последнего ка­скада УПЧ. Сигнал УПЧ детектируется первым транзистором мик­росхемы и с его коллектора через разделительный конденсатор СЗ поступает на регулятор громкости R2. С вывода 5 снимается сиг­нал АРУ. Для фильтрации составляющих ПЧ включен конденсатор С2. Неусиленный сигнал АРУ после каскада детектора формирует­ся на конденсаторе С1. Максимальный сигнал АРУ после усиления вторым транзистором микросхемы формируется на конденсаторе С2. Максимальный сигнал АРУ практически равен питающему напря­жению. Технические характеристики детектора проиллюстрированы графиками рис. 8.8, б.



                                                          Рис. 8.7



                                                          Рис. 8.8

3. ДЕТЕКТОРЫ С ОУ

Детектор с удвоителем. Для детектирования AM сигнала в схеме (рис. 8.9, а) применен удвоитель напряжения на диодах Ког­да на входе отрицательная полуволна, происходит заряд конденса­тора С1 через диод VD1. При смене полярности входного сигнала конденсатор С1 разряжается через диод VD2. На конденсаторе С2 будет двойная амплитуда входного сигнала.


Постоянная составляю­ щая на выходе схемы зависит от коэффициента усиления ОУ Ky.u = l + (R2/R1). При малых сигналах на входе схема проявляет пороговые свойства. Порог открывания меняется в зависимости от коэффициента усиления ОУ. Переходные характеристики детектора при различных R1 приведены на рис. 8.9,6, а зависимость напря­жения порога Uп от Kу.и — на рис. 8.9, в.

Детектор с ОС по постоянному току. В схеме детектора (рис. 8.10, а) применена следящая ООС. Когда на входе положи­тельная полярность входного сигнала, ОУ быстро заряжает кон­денсатор С через диод VD2. Напряжение на конденсаторе отсле­живает уровень входного сигнала через резистор R1 При уменьше­нии уровня входного сигнала ОУ мгновенно переключается по­скольку напряжение на конденсаторе сохраняет максимальное зна­чение. Конденсатор разряжается через резистор R1 и диод VD1 Скорость разряда конденсатора определяется уровнем входного сигнала.

Выходной сигнал детектора зависит от отношения сопротив­лений резисторов R1 и R2. Для каждого значения этого отношения необходимо подбирать сопротивление резистора R3, чтобы исклю­чить постоянный уровень на выходе, вызванный разбалансом ОУ. На рис. 8.10,6 приведены передаточные- характеристики детектора для различных сопротивлений R2.



                                          Рис. 8.9



                               Рис. 8.10                                                          Рис. 811

Детектор с интегратором. Схема преобразования переменного напряжения в постоянное состоит из двух ОУ (рис. 8.11): первый выполняет функции детектора, а второй — интегратора. На­пряжение, получаемое в точке соединения VDI и R4, содер­жит положительные полувол­ны входного сигнала. Этот сигнал суммируется с проти­вофазным входным сигналом. На входе ОУ DA2 будет сиг­нал положительной полярно­сти с амплитудой, равной 1/3 от амплитуды сигнала, дейст­вующего на входе. Аналогич­ная амплитуда будет форми­роваться от положительной полярности входного сигнала.


В результате на выходе ОУ DA2 по­лучается постоянное напряжение, пропорциональное входному пе­ременному напряжению. Линейчость преобразования достигается выбором сопротивлений резисторов из условия R1 = 2R3, Rl = R7. В настроенной схеме динамический диапазон преобразования вход­ного сигнала находится в пределах от 10 мВ до 1,5 В с погрешно­стью не более 1,5%; частота входного сигнала в пределах от 0 до 100 кГц.



                               Рис 8.12                                               Рис. 8.13

Пиковый детектор на ОУ с запоминанием. Входной сигнал де­тектора (рис. 8.12) через ОУ DA1 заряжает конденсатор С. Посто­янное напряжение на конденсаторе через ООС подается на второй вход ОУ DAL Эта связь действует через ОУ DA2. На конденсато­ре устанавливается максимальное значение входного сигнала. Это напряжение может продолжительное время оставаться на конденса­торе. С приходом положительного импульса по цепи управления происходит разряд кэнденсатора. После этого конденсатор может вновь запомнить максимальное значение выпрямленного напряжения входного сигнала.

Пик-детектор с ООС. Входной сигнал схемы (рис. 8.13) посту­пает на ОУ DA1, который усиливает его в 10 раз. Выходной сигнал ОУ DAJ через транзистор VT1 заряжает накопительный конденса­тор С. По мере увеличения напряжения на конденсаторе увеличи­вается напряжение ОС на инвертирующем входе интегральной мик­росхемы DA2. В результате напряжение ОС будет равно амплитуде сигнала на выходе микросхемы DA1. Это напряжение может сохра­няться продолжительное время. Для сброса напряжения конденса­тора необходимо открыть полевой транзистор при нулевом входном сигнале.

4. ДЕТЕКТОРЫ С НЕЛИНЕЙНЫМИ ПЕРЕДАТОЧНЫМИ ХАРАКТЕРИСТИКАМИ

Пиковый детектор на транзисторах. При отсутствии на входе AM сигнала транзисторы VT1 и VT2 (рис. 8.14) закрыты. Напряжение на конденсаторах CI и С2 равно нулю. Входной сигнал через эмиттерный повторитель на транзисторе VT1 проходит на базу транзистора VT2. Импульс отрицательной полярности проходит через два транзисторных перехода.


Через переход база — коллектор заряжается конденсатор С2, а через переход база — эмиттер — конденсатор С1. В этом случае транзистор работает как два диода. При отсутствии входного сигнала конденсатор С1 разряжается через переход база — эмиттер VT3 и резистор R2. Напряжение на конден­саторе С2 остается без изменения. Если последующий входной им­пульс будет иметь большую амплитуду, чем предыдущий, то вновь откроется два перехода транзистора VT2 и произойдет заряд коненсаторов до нового уровня входного сигнала. В том случае, если входной импульс будет меньше по амплитуде, то откроется толь ко переход база — эмиттер. Тран зистор VT2 работает как триод Конденсатор С2 разряжается че­рез транзистор VT2 на конденса­тор С1. Процесс разряда будет происходить до тех пор, пока по­тенциалы этих конденсаторов не сравняются. Напряжение на них будет равно амплитуде входного сигнала. Постоянная времени за­ряда конденсатора С2 равна 2,5 мкс, постоянная времени раз­ряда — 40 или 0,6 мкс в зависимости от режима работы транзи­стора VT2. Точность детектирования огибающей не хуже 2,5% при частоте 100 кГц. Минимальная амплитуда входного сигнала 20 мВ.



                   Рис. 8.14                                              Рис. 8.15



                                          Рис. 8.16

Частотно-зависимый амплитудный детектор. Выходной сигнал детектора (рис. 8.15, а) снимается с диагонали моста, который включен в цепь ООС ОУ. Коэффициент передачи детектора зависит от элементов ООС R3, R2 и С, а также от сопротивления компен­сирующего резистора R1. Коэффициент передачи определяется вы­ражением



На рис. 8.15,6 приведена зависимость выходного напряжения от частоты.

Квадратичный детектор с аппроксимацией. Детектор (рис. 8.16) состоит из двух симметричных устройств. На вход ОУ DA1 прихо­дит отрицательная полярность входного сигнала, а на вход ОУ DA2 — положительная. Когда входной сигнал отрицательной поляр­ности имеет уровень меньше 1 В, коэффициент усиления микросхемы определяется отношением R6/R1 и равен единице.


Как только вход­ной сигнал превысит уровень 1 В открывается транзистор VT1 и коэффициент усиления усилителя меняется. На выходе интеграль­ной микросхемы DA1 сигнал удваивается. При дальнейшем увели­чении входного сигнала будут последовательно открываться осталь­ные транзисторы. Таким образом, квадратичная зависимость выход­ного сигнала будет аппроксимирована линейными участками. Воз-рая половина схемы для положительной полярности входного сиг­нала работает аналогичным образом. Верхняя граничная частота входного сигнала определяется граничной частотой работы ОУ.

5. ЧАСТОТНЫЕ ДЕТЕКТОРЫ

Детектор на дифференцирующем каскаде. В основу ча­стотного детектора (рис. 8.17, а) положен каскад усилителя с не­равномерной частотной характеристикой. Коэффициент усиления усилителя равен oR2Ci. К коллектору транзистора VJ2 подключен детектор. Постоянное напряжение на выходе детектора пропорцио­нально частоте входного сигнала. На рис. 7.17, а показаны три гра­фика зависимости выходного сигнала от частоты при различных емкостях конденсатора CL Линейная зависимость наблюдается для емкости 6 нФ. На частоте 100 кГц коэффициент передачи де­тектора равен 100.



                                          Рис. 8.17



                                          Рис 8.18

Детектор с фазовым звеном. Частотный детектор (рис 8 18) построен по принципу синхронного детектирования Входной сиг­нал через транзистор VT1 проходит на базы транзисторов VT2 и VT3 Транзистор VT2 совместно с элементами С! и R6 образуют фазосдвнгающин каскад Цепочка R6 и С1 имеет частоту среза 1 кГц На этой частоте выходной сигнал транзистора VT2 сдвинут на 90° относительно входного сигнала В каскаде на транзисторе VT3 входной сигнал усиливается и ограничивается Этот сигнал управляет работой полевого транзистора VT4, который работает в ключевом режиме и управляет цепью, через которую проходит сдвинутый по фазе входной сигнал Интегратор на элементах R11 и С4 выделяет постоянную составляющую Зависимость постоянной составляющей от частоты входного сигнала, имеющего амплитуду 2 В, приведена на рис 8 18



Активные частотные детекторы. Четыре схемы частотных де­текторов (рис 8 19) построены по одному принципу Частотно-за­висимым элементом в схемах является RC цепочка Сигнал на ре­зисторе R2 в схеме рис 819, с сдвинут относительно входного сигнала на определенный фазовый угол Фазовый сдвиг зависит от частоты входного сигнала Сигнал на базе управляет транзистором VT, выходной ток которого заряжает конденсатор С2 Значение тока определяется сопротивлением резистора R1 Функции интегри­рования выходного сигнала выполняют элементы RI, C2 Кроме того, резистор R1 является элементом фазосдвигающей цепочки

В схеме рис 819,6 фазосдвигающая цепочка построена на эле­ментах R1, С1, а интегрирующая цепочка — на R2, С2. Частотные характеристики обоих детекторов имеют в области низких частот неравномерный участок, который ограничивает рабочий диапазон устройства Чтобы уменьшить этот участок, в следующих схемах включен дополнительный транзистор На рис 819, в детектор имеет частотную характеристику, неравномерный участок которой пере­мещен к частотам менее 2 кГц Введение дополнительного транзи­стора в схеме с ОБ позволило создать детектор (рис 819, г), ча­стотная характеристика которого является линейной и имеет большую крутизну, чем все предыдущие Амплитуда входного сиг­нала равна 3 В Все схемы проиллюстрированы частотными зави­симостями выходного напряжения

Детектор с фазовым мостом. В основе частотного детектора (рис 8 20, а) лежат две схемы мостового фазовращателя и балансного фазового детектора Фазовращатель собран на Rl, R2 и С1.С2, а фазовый детектор состоит из следующих элементов VD1, VD2, R3, R4, СЗ, С4 Выходное напряжение фазовращателя используется ках коммутирующее напряжение для детектора При изменении ча­стоты входного сигнала от 0 до оо сдвиг фазы выходного сигнала на выходе фазовращателя будет меняться от 0 до 180° Для частоты w=1/RС = 2,1 МГц сдвиг фазы будет равен 90°. Для этого сдвига фазы на выходе детектора будет нулевое напряжение.


При других значениях фазового сдвига напряжение на выходе детектора является положительным или отрицательным. Коэффициент передачи детектора в зависимости от частоты сигнала определяется выраже­нием UBЫХ/Uвых max=(w02 — w2)/(w02 +w2). На рис. 8.20, б приведена характеристика детектора.



                               Рис 8.19



                                          Рис. 8.20



                                          Рис. 8.21

Частотный детектор на интегральной микросхеме К224ДС2. Принципиальная схема микросхемы приведена на рис. 8.21, а. Сим­метричный детектор отношений (рис. 8.21,6) предназначен для ра­боты с частотой от 6 до 20 МГц. Для симметрирования плеч детек­тора между выводами 3, 5 включен резистор R.

6. ФАЗОВЫЕ ДЕТЕКТОРЫ

Детектор на дифференциальном усилителе. Детектор (рис. 8.22) построен на дифференциальном усилителе, входящем в микросхему, к выходу которого подключены два транзистора, осу­ществляющие функции повторителя и преобразователя уровня. На один вход усилителя поступает исследуемый сигнал, на вход управ­ления — опорный сигнал. Амплитудная характеристика детектора линейна при амплитудах входного сигнала до 50 мВ. Частотный диапазон работы от единиц герц до мегагерц.



                                                          Рис. 8.22

Детектор на ограничителях. Фазовый детектор (рис 823 а) со­стоит из двух усилительных каскадов, работающих в режиме насы­щения. На первый вход подается исследуемый сигнал а на вто­рой — сигнал с опорной частотой. В коллекторах транзисторов появ­ляется сигнал прямоугольной формы. Когда в коллекторах транзи­сторов VT1 и VT2 сигнал положительной полярности а в коллек­торах VT3 и VT4 — отрицательной, то на входе диода будет нуле­вой сигнал. Это случай совпадения сигналов по фазе При сдвиге сигналов на 2л в коллекторах транзисторов будут совпадать по времени положительные и отрицательные импульсы. На входе диода будет сигнал той же полярности, что и в коллекторах транзисто­ров.


Отрицательный полупериод сигнала пройдет через диод и на выходе фильтра выделится постоянная составляющая Длитель­ность импульсов положительной и отрицательной полярностей бу­дет пропорциональна фазовому сдвигу между сигналами В прин­ципе можно образовать выходной сигнал и от положительных им­пульсов. На рис. 8.23, б приведена характеристика детектора



                                                          Рис. 8.23

Детектор на интегральной микросхеме К122УД1. Детектор собран на дифференциальном усилителе интегральной микросхемы К122УД1 (рис. 8.24). Сигнал на Входе 1 (база одного из двух транзисторов дифференциальной пары микросхемы) формирует на двух выходах сигналы, сдвинутые по фазе на 180°. Сигнал, кото­рый подается на Вход 2 (база транзистора микросхемы), форми­рует сигналы, совпадающие по фазе. При фазовом сдвиге сигналов, равном 90°, на входах и выходах микросхемы образуются одина­ковые сигналы. После выпрямления на выходе детектора будет нуль. Для совпадающих по фазе входных сигналов на выходах дифферен­циального усилителя будет максимальный разбаланс по амплиту­де. В этом случае после детектирования формируется максимальное отрицательное напряжение. При сдвиге по фазе на 180° между входными сигналами на выходе схемы формируется максимальное положительное напряжение. Для других фазовых соотношений между входными сигналами на выходе будет устанавливаться промежуточное значение. Детектор работает при входных сигналах с амплитудой до 1 В на частотах от 1 кГц до 1 МГц.



                          Рис. 8.24

Фазовый детектор с амплитудными ограничителями. Фазовый детектор (рис. 8.25) состоит из двух детекторов AM сигнала, кото­рые построены на ОУ DA1 и DA2. Если на входах действуют сиг­налы U1 — А (t)соs[wt+ф(t)] и U2 = Acoswt, то на выходе детекто­ра после ОУ DA3, работающего в схеме дифференциального интегратора, будет сигнал, равный среднему значению выходных напря­жений ОУ DAI и DA2. Для A>A(t) Uвых = 2/п A(t) cos Ф(t).


Де­тектор работает в широком диапазоне частот. Верхняя граничная частота определяется частотными свойствами ОУ Нижняя гранич­ная частота зависит от параметров интегратора. В детекторе можно применить любой ОУ. Детектор с ОС. Входной фазомодулированный сигнат подается на входы ОУ DA1 (рис. 8.26).



                                          Рис. 8.25



                                          Рис. 8.26

Выходной сигнал этого усилителя зависит от состояния полевого транзистора. Если транзистор за­крыт, то выходной сигнал равен нулю. При открытом состоянии транзистора входной сигнал проходит на выход DA1. Управление полевым транзистором осуществляется интегральной микросхемой DA3, выполняющей функции ограничителя. На вход этой схемы по­ступает сигнал с фазосдвигающего устройства, построенного на интегральной микросхеме DA2. Коэффициент передачи фазосдвига­ющего каскада равен К= l/(l+jwC2R8). Частота cpeзa цепочки может быть определена из равенства w0 = R8С2=1. Для подстрой­ки фазы сигнала служит потенциометр R8. В результате входной сигнал с частотой w0 будет создавать нулевой сигнал на выходе интегратора Я4С,. При изменении входного сигнала по фазе на вы ходе интегратора образуется сигнал, который дополнительно усили­вается интегральной микросхемой DA4.

Фазовый детектор на переключателях. Фазовый детектор (рис. 8.27) состоит из двухполупернодного детектора усилителя и схемы управления. Детектор сигнала состоит из аналоговых ключей на полевых транзисторах VT1-VT3 и ОУ DA1. При открывали транзисторов VT1 и VT2 входной сигнал проходит через ОУ DA1 инвертируется. Коэффициент усиления усилителя равен единице При закрывании VT1 и VT2 открывается VT3. Через транзтотор VT3 входной сигнал проходит на вход ОУ DA2. Управление детек тором осуществляется входными сигналами с транзисторов VT5 и VT6.

Для балансировки ОУ DA2 при отсутствии входного сигнал служит потенциометр R15. В цепь ОС этого ОУ включен конденсатор, выполняющий функции интегратора.


Его емкость определяется частотой входного сигнала. Схема управления собрана на транзи­сторах VT4 — VT6. Фазовый детектор может работать в диапазоне частот от 50 Гц до 20 кГц. Чувствительность схемы выше 120 мВ/град. Дрейф нуля меньше 60 мВ.



Рис. 8.27

7. ОДНОТАКТНЫЕ ДЕТЕКТОРЫ

Транзисторный детектор. Детектор (на рис. 8.28, а) по­строен на одном транзисторе, который выполняет функции ключа. При отсутствии опорного сигнала входной сигнал отрицательной полярности открывает переход база — коллектор транзистора. Сиг­нал на выходе отсутствует. Входной сигнал положительной поляр­ности запирает переход коллектор — база. В этом случае опорный сигнал открывает транзистор. Ток входного сигнала проходит через эмиттер-коллекторную цепь. При различных фазовых соотношениях между входным и опорным сигналами амплитуда сигнала на выходе будет меняться. Выходной сигнал меняется и от амплитуды входно­го сигнала. Эти зависимости показаны на рис. 8.28, б, в. Частота сигналов 10 кГц, амплитуда входного сигнала 1 В, опорного — 2 В. Для компенсации постоянного уровня отрицательной полярно­сти предназначен резистор R5.



                               Рис. 8.28



                                          Рис. 8.29

Конденсаторный детектор. Синхронный детектор (рис. 8.29, а) построен по принципу интегрального накопления заряда на конден­саторе. Во время отрицательной полуволны опорного сигнала тран­зистор VT2 открыт. Входной сигнал заряжает конденсатор С1 через резистор R1. Во время положительного полупериода транзистор VT2 закроется, a VT1 откроется. Накопленный заряд на конденса­торе С2 будет приложен к интегрирующей цепочке R3C2. В резуль­тате на выходе будет выделена постоянная составляющая. Зави­симость выходного сигнала от фазового сдвига между входным и опорным сигналами показана на рис. 8.29,6. Если вместо резистора R3 поставить диод VD, то получим однополярную характеристику. Амплитуда входного сигнала 1 В, частота 50 кГц. Амплитуда опор­ного гармонического сигнала 2 В.



Детектор с электронным переключателем. В синхронном детек­торе (рис. 8.30, а) роль управляющего элемента выполняет полевой транзистор. В качестве интегратора применяется ОУ с конденсато­ром в цепи ОС. Когда транзистор открыт, на выходе появляется сигнал, соответствующий среднему значению входного сигнала. Амплитуда этого сигнала регулируется в широких пределах сопро­тивлениями резисторов R1 и R2. Емкость конденсатора также влияет на выходной сигнал. На рис. 8.30, б приведена зависимость коэф­фициента передачи детектора от частотного сдвига между выходным и опорным сигналами.



                                          Рис. 8.30



                                          Рис. 8.31

Детектор на интегральной микросхеме К122УД1. Детектор (рис. 8.31, а) собран на дифференциальном усилителе. Входной сиг­нал подается на базу усилительного транзистора, а опорный — на базу токозадающего транзистора. Выходной сигнал является ре­зультатом взаимодействия двух сигналов. Он зависит от амплитуды входного и опорного сигналов, а также от фазового сдвига между ними.

Эта схема может применяться для детектирования AM и ФМ сигналов. Амплитудно-модулированный сигнал требует стабилиза­ции фазы между сигналами, а ФМ сигнал — стабилизации амплитуд сигналов. Кроме того, детектор может применяться и для детекти­рования ЧМ сигналов. В этом случае необходимо изменить схему, связанную с транзистором VT. Изображенная схема предназначена для выявления амплитудных изменений входного сигнала. Она яв­ляется узкополосной. На рис. 8.31,6 — г проиллюстрированы зависи­мости выходного напряжения детектора от опорного и входного на­пряжений, а точнее, разности фаз между ними.

8. ДВУХТАКТНЫЕ ДЕТЕКТОРЫ

Двухтактный детектор. В качестве управляющих элемен­тов в детекторе (рис. 8.32) используют два транзистора. Противо­фазные сигналы управления отрицательной полярности подаются на базы транзисторов. Когда один транзистор закрыт отрицательным импульсом, в базе другого — нулевой потенциал и транзистор от­крыт.


С помощью транзисторов осуществляется прерывание вход­ного сигнала. Сигнал с эмиттеров транзисторов подается на ОУ. С помощью резисторов R5 и R7 устанавливается необходимый коэф­фициент усиления (K=10). Подбором резисторов R6 и R8 вырав­нивают амплитуды сигналов, которые проходят на выход ОУ. Детектор работает на частотах до сотен килогерц.



                                          Рис. 8.32

Детектор на полевых транзисторах. Детектор (рис. 8.33) состоит из двух ключей и ОУ. В качестве ключей применены полевые тран­зисторы, позволяющие коммутировать сигналы низкого уровня. Минимальный входной сигнал равен 10 мВ, управляющий сигнал подается на затворы полевых транзисторов, сигнал положительной полярности на неинвертирующий вход ОУ, а отрицательная поляр­ность входного сигнала — на инвертирующий вход усилителя. В ре­зультате на выходе ОУ формируется сигнал положительной по­лярности. Регулировка коэффициента усиления осуществляется резистором R3. Входное сопротивление детектора более 40 кОм, а выходное менее 200 Ом. Граничная частота входного сигнала 20 кГц. Погрешность преобразования менее 0,5%.

Синхронные фильтр и детектор. В состав синхронного детекто­ра (рис. 8.34) входит синхронный фильтр, построенный на элемен­тах R1, С1, С2 и управляемый транзисторами микросхемы DA1.



       Рис. 8.33                                              Рис. 8.34

Эти транзисторы поочередно открываются импульсным напряжением с амплитудой 2 В. Операционный усилитель детектирует сигналы фильтра, в результате чего на выходе появляется постоянная состав­ляющая. Коэффициент передачи схемы равен 20, температурный дрейф 0,1%/град. Постоянная времени приблизительно 1,5 с. Мак­симальная амплитуда входного сигнала ±0,5 В. Температурный дрейф нуля 20 — 50 мкВ/град.

Высокочастотный синхронный детектор. В синхронном детекто­ре (рис. 8.35) перемножающим элементом является микросхема DA1. Интегральная микросхема DA2 преобразует парафазный сиг­нал перемножителя в однофазный.


При этом значительно ослабля­ ются синфазные помехи, которые могут быть в цепях питания. На нулевой выходной потенциал схема настраивается с помощью по­тенциометра R12.

Синхронный детектор работает на частоте 30 МГц. Исследуе­мый сигнал с частотой модуляции 2 — 20 МГц и амплитудой 150 мкВ — 250 мВ подается на Вход 1. Опорный сигнал с ампли­тудой 0,1 В подается на Вход 2. Максимальная амплитуда выход­ного сигнала равна 0,3 В. Нелинейность частотной характеристики менее 3%, а нелинейность амплитудной характеристики 2%. Верх­няя граничная частота модуляции входного сигнала определяется полосой пропускания ОУ DA2. На выходе этого усилителя включе­ны два фильтра, которые ослабляют составляющие с частотами 30 и 60 МГц более чем на 60 дБ. Эти составляющие появляются в ре­зультате перемножения входного и опорного сигналов в интеграль­ной микросхеме DA1.

Для устранения возбуждения микросхемы DA2 необходимо включить между контактами 2 и 4 конденсатор емкостью 16 пФ и между контактами 2 и 12 — резистор сопротивлением 100 Ом и конденсатор емкостью 56 пФ.

Детектор на перемножителе. Основой синхронного детектора (рис. 8.36) является микросхема DA3. На Вход 2 детектора по­дается преобразуемый сигнал, а на Вход 1 — опорный сигнал. Для линеаризации рабочей характеристики детектора опорный сигнал, проходит на микросхему DA3 через логарифмический каскад. Этот каскад построен по дифференциальной схеме на DA2 с диодной нагрузкой в коллекторах (DA1). Такое включение позволяет создать режим работы микросхемы DA3 по постоянному току, обеспечивая хорошую температурную стабилизацию и высокий коэффициент по­давления опорного сигнала на выходе микросхемы DA3. Амплитуда опорного сигнала равна 0,5 В. Балансировка перемножителя по по­стоянному току осуществляется потенциометрами JR3 и R13. Когда опорный сигнал равен нулю, то с помощью резистора КЗ добивают­ся максимального подавления преобразуемого сигнала. С помощью резистора R13 добиваются максимального подавления опорного сигнала при нулевом сигнале на Входе 1. Выходной парафазный сигнал перемножителя подается на микросхему DA4, которая до­полнительно усиливает его в 10 раз, что позволяет существенно ослабить влияние синфазной помехи в цепи питания и уменьшить дрейф нуля.





                                          Рис. 8.35



                                          Рис. 8.36

Детектор работает в диапазоне частот от 20 Гц до 2 МГц. Неравномерность коэффициента передачи в этом диапазоне менее 3%. Амплитуда преобразуемого сигнала меняется от 0,2 мВ до 0,5 В при точности преобразования 1%. При увеличении амплитуды сигнала до 1 В точность преобразования снижается до 3%.

Глава 9

 

ГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Генераторы гармонических колебаний являются одними из наиболее важных и незаменимых элементов различных устройств. Генераторы используют при измерениях, в аппаратуре связи, авто­матике и телемеханике. В зависимости от условий работы к генера­торам предъявляют разные требования в отношении стабильности частоты, амплитуды и формы колебаний. Генераторы, которые должны обеспечивать относительную нестабильность частоты не хуже 10-6, делают с кварцевой стабилизацией частоты. В этих ге­нераторах кварцевый резонатор определяет все основные парамет­ры. Кварцевые генераторы являются сложными устройствами.

Основное внимание в этой главе будет уделено простым схе­мам генераторов, к стабильности частоты которых не предъявляет­ся особых требований. Причины, вызывающие нестабильность па­раметров этих генераторов, известны, и они широко освещены в литературе.

Основными элементами генераторов являются активный эле­мент и фазосдвигающая цепь. В качестве активного элемента при­меняют усилительные каскады и устройства с отрицательным диф­ференциальным сопротивлением. Фазосдвигающие цепи построены на RC- и LRС-элементах. На частотах выше 100 кГц используют в основном LRС-элементы, а на частотах ниже 20 кГц — генераторы на RС-элементах.

Предъявление повышенных требований к техническим характе­ристикам RС-генераторов неразрывно связано с применением высо­кокачественных усилителей. Однокаскадные генераторы не могут обеспечить высокую стабильность частоты и амплитуды, а также малые нелинейные искажения.


Это объясняется тем, что введение в однокаскадный усилитель ООС по постоянному и переменному сиг­налам резко снижает усиление. По этой причине RС-генераторы строятся на многокаскадных усилителях с большим коэффициентом усиления.

В аппаратуре находят применение генераторы с фиксированной и с перестраиваемой частотой Генераторы с перестраиваемой часто­той имеют значительно более широкие возможности. Однако они конструктивно сложнее. Изменение частоты осуществляется за счет изменения номиналов элементов У? и С. В качестве переменного со­противления можно использовать полевой транзистор. Расширения пределов изменения емкости можно добиться, включив конденсатор в цепь ООС. Максимальная эквивалентная емкость будет при этом определяться СЭкв = С0с (1 + КУ и), где Kу u — коэффициент усиления усилителя.

В существующих схемах генераторов могут появиться два вида искажений формы сигналов. Во-первых, искажения, возникающие за счет нелинейной схемы стабилизации амплитуды колебаний. Во-вторых, искажения, возникающие в перестраиваемых генераторах за счет нелинейности характеристики полевого транзистора. Иска­жения первого вида могут быть значительно уменьшены путем до­бавления цепи с автоматической регулировкой коэффициента уси­ления активного элемента Для устранения искажений, связанных с нелинейностью полевого транзистора, необходимо уменьшить амп­литуду гармонического сигнала, а также применить ООС в управ­ляющем каскаде.

Включение корректирующих элементов в ОУ, которые применя­ются в устройствах, показано в гл 1

1. ОДНОКАСКАДНЫЕ ГЕНЕРАТОРЫ

Однокаскадный генератор. Генератор (рис 0 !) собран на одном транзисторе, в цег ОС которого включен дпойной Т-образ­ный мост Режим транзистора по постоянному току устанавливается с помощью тех же резисторов, что и RC-фильтр моста. В зависимости от парамет­ров моста схема генерирует колебания с частотами от 20 Гц до 20 кГц. При ука­занных на, схеме номиналах элементов ча­стота генерации равна 1 кГц.


В небольших пределах (меньше 20%) частоту колеба­ний можно регулировать с помощью рези­ стора R4. Для подавления колебаний бо­лее высокой частоты, которые возникают совместно с колебаниями основной, следу­ет включить резистор R5. Вспомогательные колебания возникают в основном в крем­ниевых транзисторах с большим коэффи­циентом передачи по току. Частота выход­ного сигнала определяется выражением fo=16*104/RC, где f — в герцах, R — в омах, С — в микрофарадах. Двухкаскадный генератор. Параметры схемы (рис. 9.2) можно рассчитать по формулам. Определяется минимально возможное со­противление резистора R4 из выражения R4>Uu/I, где Ua — напря­жение питания, I — максимально допустимый ток транзистора VT2. Для выполнения условий возбуждения необходимо положить коэф­фициент Y=0,05 (входит в выражение для определения R3<YR4/(l — Y)). При определении сопротивления резистора R2 не­обходимо руководствоваться неравенством R2>R4, а для опреде­ления емкостей конденсаторов С1 и С2 — формулами C2 =1/w0R2 и C1>2C2/h21ЭY. где h21э — коэффициент передачи тока транзи­стора VT1. Сопротивление резистора R1 определяется формулой R1>2h213R2. Для тех номиналов элементов, которые указаны на схеме, частота генерации равна 2 кГц. Для уменьшения нелинейных искажений необходимо подобрать сопротивление резистора R4 или R3.



       Рис. 9.1                                    Рис. 9.2                                    Рис. 9.3

Генератор на полевом транзисторе. Генератор инфранизкой ча­стоты (рис. 9.3) имеет амплитуду выходного сигнала 12 В. Частота колебания равна 1 Гц. В генераторе применена ООС (резисторы R2 и R3), которая стабилизирует параметры выходного сигнала. Применение в мосте Вина резисторов больших сопротивлений зна­чительно сократило габариты конденсаторов и тем самым уменьши­ло отклонение частоты от расчетного значения.



                                                          Рис. 9.4

Генератор с отрицательным сопротивлением. Низкочастотный LC-генератор (рис. 9.4, а) собран на двух полевых транзисторах, ко­торые образуют устройство с отрицательным дифференциальным сопротивлением (рис. 94,6).


Для установки рабочей точки яа базе транзистора VT1 меняется напряжение. С помощью этого напряже­ния меняется амплитуда выходного сигнала. Частота сигнала 1 кГц, амплитуда сигнала около 1 В.

Низкочастотный RC-генератор. Генератор (рис. 9.5) собран на четырехзвенной фазосдвигающей цепочке. Частоту выходного сиг­нала можно рассчитать по формуле



где R — в кило-омах, С — в микрофарадах. Коэффи­циент нелинейных искажений менее 1%. Для надежного возбуждения генератора необходимо применять транзисторы с коэффициентом пере­дачи тока более 50.



                   Рис. 9.5                                                            Рис. 9.6

Генератор с автоматической ре­гулировкой амплитуды сигнала. Ге­нератор (рис. 9 6) собран на поле­вом транзисторе VT1 с двойным Т-образным мостом в цепи ОС. Для стабилизации амплитуды выходного сигнала в коллекторах транзисторов VT2 и VT3 колебания выпрямляют­ся детектором, собранным на элементах С6, С7, VD1, VD2. На выходе детектора формируется постоянное напряжение положи­тельной полярности. Когда колебания в генераторе отсутст­вуют, через резистор R11 протекает ток, открывающий транзистор VT4. В цепь истока полевого транзистора включен резистор R8. Сопротивление этого резистора устанавливает такой ток через тран­зистор VT1, при котором крутизна его максимальна. При генера­ции напряжение с детектора подзапирает VT4, уменьшая крутизну VT1 и тем самым стабилизируя амплитуду генератора. Частота ге­нерируемых колебаний 1 кГц. Для увеличения или уменьшения ча­стоты выходного сигнала необходимо пропорционально изменить номиналы элементов R1 — R3, С2 — С4. Меняя соотношение резисто­ров R10 и R11, можно менять амплитуду выходного сигнала.

2. МНОГОДИАПАЗОННЫЕ ГЕНЕРАТОРЫ

Двухчастотный генератор. Устройство (рис. 9.7) состоит из двух генераторов. Первый генератор, собранный на транзисторе VT1, выдает сигнал с частотой 2 кГц, а второй (на транзисторе VT4) — сигнал с частотой 1 кГц. Генерация осуществляется по­средством введения в цепь ОС четырехзвенной фазосдвигающей RС-цепи.


Сигналы с генераторов суммируются на транзисторах VT2 и VT3, работающих на общую нагрузку. Резистором R7 можно ре­гулировать амплитуду составляющих выходного сигнала.

Перестраиваемый звуковой генератор. Частотный диапазон ге­нератора (рис. 98) лежит от 10 Гц до 100 кГц Он разбит на четы­ре поддиапазона: 10 — 100 Гц; 0,1 — 1 кГц; 1 — 10 кГц; 10 — 100 кГц. Амплитуда выходного сигнала 2 В. Коэффициент нелинейных иска­жений во всем диапазоне менее 1%. Неравномерность амплитудно-частотной характеристики менее 0,3 дБ Для стабилизации выход­ного напряжения включена цепь ООС R13, G5. Положительная об­ратная связь осуществляется посредством моста Вина.



                               Рис. 9.7                                                                        Рис. 9.8

 

Генератор на фазосдвигающих каскадах. В основу генератора (рис. 9 9) положен каскад с фазосдвигающей цепочкой. Транзистор VT1 совместно с конденсаторами С1 — С4 и резисторами R3 и R4 осуществляют сдвиг гармонического сигнала определенной частоты на 90е. Второй фазосдвигающий каскад на VT3 производит допол­нительный сдвиг на 90°. На транзисторах VT2 и VT4 выполнены развязывающие эмиттерные повторители, а на VT5 — усилитель по схеме с ОЭ. В результате на коллекторе транзистора VT5 фаза сиг­нала сдвинута по отношению к фазе сигнала на базе VT1 на 360° и при соединении их через С9, R13, R14 образуется ПОС. В генераторе возникают гармонические колебания. Частоту Mm колеба­ний можно менять регулировкой конденсаторов или резисторов фа-зосдвигающих цепочек В данном случае грубое изменение частоты осуществляется переключением конденсаторов С1 — C8, а плавное - резисторами R4 и R9. С помощью резистора R14 добиваются устой­чивой амплитуды выходного сигнала В схеме можно применить интегральную микросхему К198НТЗ.



                               Рис. 9.9



                                          Рис. 9.10



                               Рис 9.11

Генератор со стабильной амплитудой. Генератор гармонических сигналов, с частотами от 10 Гц до 100 кГц (рис. 9 10) обладает вы­сокой стабильностью амплитуды Стабилизация амплитуды сигнала осуществляется с помощью полевого транзистора, включенного в цепь ПОС Управление полевым транзистором производится посто­янным напряжением, которое формируется на конденсаторе С1 и усиливается ОУ DA2. Большой коэффициент передачи ОУ DA2 удерживает амплитуду гармонического сигнала с точностью до де­сятков милливольт в диапазоне от 1 до 9 В Регулировка амплиту­ды осуществляется потенциометром R9 Коэффициент гармоник вы­ходного сигнала менее 0,1%.

Мостовой генератор. Генератор (рис. 911) формирует гармони­ческие сигналы с частотами от 20 Гц до 200 кГц Частотно-задаю­щим элементом является RC-мост Изменение частоты производит­ся дискретно с помощью конденсаторов и плавно с помощью рези­сторов R3 и R4. Существуют четыре диапазона- 20 — 200 Гц; ,0,2 — 2 кГц; 2 — 20 кГц; 20 — 200 кГц. Терморезистор R11 осуществ­ляет автоматическую регулировку амплитуды колебаний и умень­шает нелинейные искажения. Выходное напряжение генератора со­ставляет 1 В при коэффициенте гармоник 0,5%. На частотах мень­ше 50 Гц и больше 50 кГц коэффициент гармоник увеличивается ао 1%.



ДВУХПОЛЮСНИКИ С ОТРИЦАТЕЛЬНЫМ СОПРОТИВЛЕНИЕМ


 

Устройства, вольт-амперная характеристика которых имеет падающий участок, могут быть двух типов. Они отличаются по виду характеристик. Характеристика N-вида имеет максимум тока а ха­рактеристика S-вида — максимум напряжения. Для исследования устройств с вольт-амперной характеристикой N-вида необходимо иметь источник постоянного напряжения с малым внутренним сопро­тивлением. Вольт-амперные характеристики S-вида получаются с по­мощью источника тока.

 Схемы с отрицательным дифференциальным сопротивлением на­ходят применение для получения генераторов гармонических и нм-пулььных сигналов. Эти устройства могут применяться и для усиле­ния электрических сигналов в длинных линиях в телеграфных систе­мах передачи информации.

Разработаны и исследованы различные схемы, обладающие отри­цательным сопротивлением. Эти схемы построены в основном на двух транзисторах. Схемы включения ОУ, которые используются в устрой­ствах, показаны в гл. 1.

 

I. СХЕМЫ С ХАРАКТЕРИСТИКОЙ  S-ВИДА

Схема последовательного принципа действия. Устройство (рис. 3.1) имеет S-образную вольт-амперную характеристику. Поло­жительное входное напряжение открывает переход эмиттер — база транзистора VT1, через который протекает ток, определяемый ре­зистором R4. Коллекторный ток транзистора VT1 создает падение напряжения на резисторе R2, которое открывает транзистор VT2. Ток, протекающий через транзистор VT2, поступает из входной цепи через резистор R1. Кроме того, открывание транзистора VT2 вызы­вает уменьшение напряжения в базовой цепи транзистора VT1: па­раллельно резистору R4 подключается резистор R3. В результате формируется наклонный участок вольт-амперной характеристики. После того как транзистор VT2 полностью откроется, входной ток схемы будеТ определяться резистором R1. Наклонный участок вольт-амперной характеристики будет определяться соотношением ДU/ДI =R1R3/R2.

Схема с управляемой вольт-амперной характеристикой. Для полу­чения такой характеристики используется эквивалент однопереход-ного транзистора, построенный на двух транзисторах с различным типом проводимости (рис; 3.2).
При включении сопротивления Кб между базой и эмиттером (рис. 3.5, в) транзисторы имеют управ­ляемую 5-образ«ую характеристику. В инверсном включении пробой эмиттерного перехода наступает при напряжении 7 — 8 В. В этом включении наблюдается высокая стабильность характеристики. Тем­пературный коэффициент 0,02 — 0,04 %/град. Эти свойства обуслов­ливают применение их в различных быстродействующих импульсных схемах с временем нарастания около 10 не.

Управляемая напряжением каскадная схема включения. Состав­ной каскад (рис. 3.6) на транзисторах разной проводимости позво­ляет создать аналог элемента с S-образной вольт-амперной характе­ристикой. Подобными характеристиками обладают лавинные и одно-переходные транзисторы.

Транзистор VT1 в исходном состоянии закрыт напряжением ERafCRi+Rz+Ra). Когда входное напряжение превышает этот уро­вень, начинают проводить оба транзистора. Коллекторный ток тран­зистора VT1 уменьшает напряжение на резисторе R1 и тем самым уменьшает напряжение на базе транзистора VT2. На характеристике формируется падающий участок. С дальнейшим увеличением входно­го напряжения транзистор VT1 входит в насыщение. Эмиттер оказы вается подключенным ко входу. В этом случае весь ток входной цепи протекает через транзистор VT2, который не находится в насыщении. Дифференциальное отрицательное сопротивление на падающем уча­стке характеристики определяется выражением R1R3h2l3/(R1+R2 + + R3), где h21Э — коэффициент передачи по току транзистора VT1.



                                          Рис. 3.3



                                          Рис. 3.4



                                          Рис. 3.5



                                          Рис. 3.6

2. СХЕМЫ С ХАРАКТЕРИСТИКОЙ N-ВИДА

Управляемая напряжением схема последовательного включения транзисторов. Двухполюсник рис. 3.7 обладает JV-образной характе­ристикой. При нулевом входном напряжении транзистор VT1 закрыт, а второй транзистор открыт источником напряжения.


В цепи базы транзисторы VT2 течет ток. определяемый резисторами R2 и R3. При увеличении входного напряжения начинает протекать токг кото­рый проходит через резистор R4 и транзистор VT2. Дальнейшее увеличение входного напряжения открывает транзистор VT1. С от­крыванием транзистора VT1 закрывается транзистор VT2. В резуль­тате входной ток уменьшается.

Схема с параллельным включением транзисторов. При входном напряжении меньше 2 В (рис. 3.8) открыт транзистор VT1. Через него протекает ток, который определяется резистором R1. При вход­ном напряжении больше 2 В открывается транзистор VT2. который уменьшает напряжение на базе транзистора VTJ и тем самым умень­шает ток, протекающий через него. При напряжении на входе более 9 В транзистор VT2 находится в насыщении. Ток в схеме опреде­ляется резисторами R3 и R4.

Схема усилителя постоянного тока. При малых напряжениях на входе (рис. 3.9) транзистор VT1 закрыт. Входное напряжение пол­ностью приложена к базе транзистора VT2. Через этот транзистор протекает ток I э =Uвx/R5. С увеличением напряжения ток увеличи­вается почти пропорционально входному напряжению. Когда входное напряжение достигает 4 В, начинает открываться транзистор VT1. Коллекторный ток этого транзистора уменьшает напряжение в базо­вой цепи транзистора VT1, и входной ток уменьшается. Уменьшение тока наблюдается до тех пор, пока транзистор VT1 находится в ли­нейном режиме. При напряжении на входе 9 В VT1 переходит в ре­жим насыщения. Дальнейшее увеличение тока определяется общим активным сопротивлением всей схемы.



                               Рис. 3.7



                                                          Рис. 3.8

Лямбда-диод. Устройство (рис. 3.10) состоит из двух полевых транзисторов разной проводимости. Транзистор VT1 имеет канал типа n, а транзистор VT2 — типа р. При нулевом напряжении на затворе,,оба транзистора проводят. В схеме они включены в цепь ООС последовательно по отношению один к другому. Можно счи- тать, что в исток транзистора VT1 включено переменное сопротивле­ние.


Протекающий через транзистор VT1 ток создает на транзисторе VT2 падение напряжения, закрывающее транзистор VT1. В свою очередь сопротивление транзистора VT2 меняется ,в зависимости от падения напряжения-на транзисторе VT1. Таким образом, с увеличе­нием протекающего тока транзисторы стремятся закрыться. Когда падение напряжения на транзисторах достигнет уровня отсечки, про­текающий ток будет близок к нулю.

На графике рис. 3.10, а показаны характеристики для двух тран­зисторов, которые отличаются напряжением .отсечки. Для транзисто­ра КП103К напряжение отсечки равно 4 В, а для КП103Л — б В. У транзистора КПЗОЗ напряжение отсечки составляет 8 В. Для изменения наклона отрицательного участка характеристики можно включить между истоками транзисторов резистор. Семейство вольт-амперных характеристик можно реализовать при включении вместо постоянного резистора полевого-транзистора (показано на схеме и графике рис. 3.10,6).

Схема с вольт-амперной характеристикой, управляемой током. Приведенная на рис. 3.11 схема позволяет получить управляемое отрицательное сопротивление. Управление осуществляется по базе транзистора VT1. Коллекторный ток транзистора VT1 зависит от базового тока смещения. Резистор R совместно с транзисторами VT2 я VT3 управляют базовым током. При увеличении напряжения на коллекторе транзистора VT1 увеличивается ток, протекающий через цезистор R. Этот ток поступает в базу транзистора VT2. Коллектор­ный ток транзистора VT2 уменьшает базовый ток транзистора VT1. С уменьшением сопротивления резистора R скорость уменьшения коллекторного тока транзистора VT1 возрастает, что видно при срав­нении графиков на рис. 3.11,6 и в.



                                          Рис. 3.9



                                          Рис. 3.10

Схема с ООС. Устройство, схема которого приведена на рис. 3.12, имеет N-образную вольт-амперную характеристику. Воз­растающий участок этой характеристики формируется транзистором VT1. При напряжении на входе меньше 3 В транзистор VT1 нахо­дится в открытом состоянии.


По мере увеличения напряжения на входе транзистор VT2 переходит в проводящее состояние, что вызы­вает уменьшение напряжения на его коллекторе. Транзистор VT1 закрывается. Когда оба транзистора в проводящем состоянии, фор­мируется участок характеристики с отрицательным сопротивлением (рис. 3.12,6).

Схема с ограничителем тока. При входном напряжении (рис. 3.13) меньше 1 В транзистор VT2 находится в открытом со­стоянии. Через него протекает максимальный ток, определяемый вы­ражением Eh21Э/(R1+R2), где h21Э2 — коэффициент передачи тран­зистора VT2. Когда напряжение, достигнет значения, необходимого для открывания транзистора VT1, транзистор VT2 закрывается. На вольт-амперной характеристике образуется падающий участок. При напряжении на входе 1»5 В транзистор VT1 полностью откроется и весь ток схемы определится сопротивлениями резисторов R1 и R2. Если включить параллельно транзистору стабилитрон с напряжением стабилизации 4,5 В, те при входном напряжении 4,5 В ток резко воз­растет.



                                          Рис. 3.11



                                          Рис. 3.12



                                          Рис. 3.13



                                          Рис. 3.14



                                          Рис. 3.15

Схема на ОУ. Операционный усилитель с ПОС (рис. 3.14) через резистор R1 обладает участком с отрицательным дифференциальным сопротивлением r=R1R2/R3. На этом участке соблюдается хорошая линейность. Размах участка определяется напряжением насыще­ния ОУ.

Комбинированная схема. В исходном состоянии, когда входное напряжение схемы (рис. 3.15) минимально, полевой транзистор об­ладает максимальной проводимостью. С увеличением напряжения Uп на выходе ОУ образуется напряжение, которое стремится закрыть транзистор. По достижении напряжения отсечки полевой транзистор полностью закрывается. Весь ток входной цепи будет течь через ре­зисторы R1 и R2. Момент закрывания полевого транзистора можно регулировать напряжением по неинвертирующему входу ОУ.Кроме того, если увеличить отношение сопротивлений резисторов R?IRi, то можно уменьшить входное напряжение, при котором транзистор за­кроется. Для защиты полевого транзистора от больших положитель­ных управляющих напряжений служит цепочка R3, VD,



ФИЛЬТРЫ


В современной схемотехнике для селективной обработки сигналов широкое распространение нашли активные RС-фнльтры. Существует четыре типа фильтров: фильтры нижних и верхних ча­стот, полосовые и заграждающие (режекторные) фильтры. Фильтры нижних частот (ФНЧ) пропускают сигналы от постоянного тока до определенной частоты среза. Фильтры верхних частот (ФВЧ) про­пускают сигналы от определенной частоты среза до «бесконечно­сти». Верхняя частота этих фильтров определяется предельной ча­стотой работы активных элементов и паразитными емкостями. По­лосовые фильтры (ПФ) пропускают сигналы только в определен­ной полосе частот. Режекторные фильтры (РФ) предназначены для подавления сигнала в определенной полосе частот при приеме ши­рокополосных сигналов.

Задача построения частотно-избирательных схем с высокой доб­ротностью на ЯС-элементах при обеспечении малой чувствительно­сти к изменению параметров рассматривалась многими авторами. Различные способы повышения добротности с применением актив­ных цепей, рассмотренные в литературе, позволяют достичь неогра­ниченного значения добротности, однако чувствительность к изме­нению параметров схемы становится существенной. Подобные схемы обладают малым запасом устойчивости. При разработке фильтров необходимо большое внимание уделять выбору номиналов элемен­тов фазосдвигающих цепей. Не рекомендуется применять конденса­торы с емкостями меньше 200 пФ. В этом случае на паразитные емкости можно не обращать внимание. Для фильтров на инфраниз-ких частотах следует применять конденсаторы с малым ТКЕ.

Промышленностью освоен выпуск интегральных микросхем се­рии К214, которые предназначены для фильтрации низкочастотных сигналов. Фильтр верхних частот К214ФВ1 имеет частоту среза 200 Гц, а в диапазоне частот от 20 Гц до 120 Гц ослабляет сигнал более чем на 41 дБ. Фильтр нижних частот К214ФН1 имеет частоту среза 560 Гц и ослабляет сигнал на 31 дБ для частот выше 800 Гц а сигналы с частотами выше 1150 Гц ослабляются на 81 дБ Ко­эффициент усиления этих микросхем в полосе пропускания нахо­дится в пределах 0,9 — 1,0.
Входной сигнал может достигать 2 В Напряжение шума, приведенное ко входу, менее 200 мкВ Сопро­тивление нагрузки должно быть не менее 30 кОм. Серийно выпу­скаемые интегральные микросхемы фильтров имеют ограниченную номенклатуру и не всегда доступны. В то же время для решения различных задач по селекции при создании нестандартной аппара­туры применяют фильтры с большим разнообразием форм АЧХ Для разработки новых фильтров требуется, как правило лишь ме­тодика расчета фазосдвигающих цепей и принцип включения актив­ного элемента. Схемы включения ОУ, которые применяются в фильтрах, показаны в гл. 1.

1. ФИЛЬТРЫ С ПОЛОСОЙ ПРОПУСКАНИЯ ДО 1 кГц

Пассивные RC-фильтры. Пассивные фильтры низких ча­стот строятся на RС-элементах. Частота среза одиночного фильтра определяется выражением fср = 160/RС, где fср — в килогерцах, R — в омах, С — в микрофарадах. Для увеличения крутизны спада АЧХ используется последовательное соединение нескольких RС-фильтров. В такой схеме звенья имеют равные постоянные вре­мени, однако номиналы R и С могут отличаться. Применяется в основном принцип увеличения номинала сопротивления. Схемы пас­сивных ФНЧ на RС-элементах и их АЧХ приведены на рис 5 1

Динамический фильтр. Полоса пропускания динамического фильтра (рис. 5.2) меняется в зависимости от амплитуды входного сигнала. Это достигается изменением сопротивления полевого тран­зистора при управлении по затвору входным сигналом, преобразо­ванным цепочкой VD1, CL На фильтр сигнал подается с потенциометра RI. Для получения малых нелинейных искажений амплитуда входного сигнала фильтра должна быть не более 100 мВ.



                                          Рис. 5.1



                                          Рис. 5.2

Фильтр низких частот второго порядка. Частота среза АЧХ фильтра (рис. 5.3) определяется выражением



где коэффициент усиления Kу.u = R2/R1. При пропорциональном из­менении номиналов элементов схемы может быть получена другая частота среза.



Активный фильтр на полевых транзисторах. Применение поле­вых транзисторов в качестве переменных резисторов позволило соз­дать ФНЧ (рис. 5.4) с частотой среза от 300 Гц до 3,6 кГц при изменении управляющего напряжения от 2 В до 0. Крутизна спада АЧХ выше частоты среза примерно на 35 дБ/на октава. Коэффици­ент гармоник меняется от 0,5 до 1,5% при увеличении входного сигнала от 200 до 600 мВ. Для уменьшения нелинейных искажений в схеме применены цепочки R1, С1 и R3, СЗ.

Активный RC-фильтр нижних частот. Схема активного фильтра (рис. 5.5) позволяет перестраивать частоту среза от 5 Гц до 10 кГц при сохранении неравномерности АЧХ в полосе пропуска­ния в пределах 1 дБ. Затухание вне полосы пропускания не менее 26 дБ. Входное сопротивление 20 кОм, а выходное сопротивление 100 Ом.

Для снижения требований к точности элементов фильтра в ка­честве резисторов R4, R6, R8, R9 рекомендуется применять пере­менные резисторы. Желательные пределы изменения сопротивлений R4= 1 — 3,6 кОм, R6 = 6,2 — 20 кОм, R8 = 5,1— 7,5 кОм, R9 =0,68- 1,8 кОм. Емкости кон­денсаторов в зависимости от требуемой частоты среза не­обходимо изменять в широ­ких пределах. В табл. 5.1 при­ведены емкости конденсаторов с 10%-ным классом точности для различных частот среза.



                                          Рис. 5.3

Для настройки фильтра от генератора на вход фильт­ра подается сигнал с частотой 0,1 fСр. Вольтметром измеря­ется напряжение на конденса­торе С1. Далее устанавливают частоту входного сигнала 0,753 fср и регулировкой рези­стора R4 добиваются напря­жения на конденсаторе С1 на 3 дБ меньше предыдущего зна­чения. Далее вольтметр под­ключают к эмиттеру транзистора VT2 и определяют частоту fmах, на которой передача сигнала максимальна. Необходи­мо иметь fmах = 0,91 fср. В противном случае подстраивается рези­стор R6. Коэффициент передачи фильтра на частоте 0,91 fср должен быть равен 1,564 по отношению к сигналу на частоте 0,1 fср.


Коэф­ фициент передачи устанавливается резистором R8. Если после установки коэффициента передачи изменилась частота fmax, то oперации по настройке активного звена следует повторить. Далее при подключении вольтметра на выход с помощью резистора R9 на ча­стоте 0,887 fср устанавливают коэффициент передачи, равный еди­нице, по отношению к уровню сигнала на частоте 0,1 fср.

На графике рис. 5.5 показана зависимость коэффициента по­давления фильтра от частоты при частоте среза 1 кГц.



                   Рис. 5.4                                                                        Рис. 5.5



                                          Рис. 5.6

Таблица 5.1

Пределы изменения часто­ты среза. Гц

С1, мкФ

С2. мкФ

СЗ. С4. мкФ

С5. мкФ

8000 — 10000

0,01

0,0038

0,0015

0,0022

5000 — 8000

0,015

0,0043

0,0022

0.003

3150 — 5000

0,022

-0,0068

0,0033

0,0051

2000 — 3150

0,047

0,01

0,0057

0,0068

1250 — 2000

0,068

0,015

0,0094

0.015

800 — 1250

0,1

0,022

0,015

0.022

500 — 800

0,15

0,047

0,022

0,033

315 — 500

0,25

0,068

0,033

0,047

200 — 315

0,47

0,1

0,05

0,068

125 — 200

0,5

0,165

0,083

O.i5

80 — 125

1,0

0,25

0,15

0,22

50 — 80

1,5

0,43

0,22

0,33

31,5 — 50

2,5

0,65

0,33

0,5

20 — 31,5

4,0

1,0

0,5

0,68

12,5 — 20

6,0

1,33

0,8

1,0

8-12,5

10,0

2,33

1,33

2,0

5 — 8

15,0

4,0

2,0

4,0

Фильтр нижних частот с частотой среза 1 кГц. Полоса пропу­скания ФНЧ (рис. 5.6) от 40 Гц до 1 кГц. Неравномерность АЧХ в полосе пропускания не более 3 дБ. Настраивается фильтр с по­мощью резистора R9. Точность номиналов элементов 5%.

2. МНОГОЗВЕННЫЕ ФИЛЬТРЫ

Фильтр низких частот восьмого порядка. Активный ФНЧ (рис. 5.7) имеет частоту среза 1 кГц. Неравномерность частотной характеристики в полосе пропускания не более 3 дБ.


Затухание вне полосы пропускания при расстройке на октаву равно более 40 дБ. Входное сопротивление фильтра более 20 кОм, а выходное — менее 500 Ом. Максимальный входной сигнал, при котором отсут­ствуют нелинейные искажения, равен 1 В. Диапазон рабочей тем­пературы от — 40 до +40° С. При использовании схемы для постро­ения фильтра с частотой среза выше (ниже) 1 кГц необходимо пропорционально увеличить (уменьшить) емкости конденсаторов С2 —С9.



                                          Рис. 5.7



                                                          Рис. 5.8

Фильтр настраивается следующим образом. С помощью рези­сторов R7 и R10 устанавливаются коэффициенты передачи (равны­ми 0,9 на частоте среза fep и 0,27 на частоте 2 fср). Настройка второго звена осуществляется резисторами R14 и R17, которые устанавливают коэффициенты передачи равным 2,56 на частоте среза и 0,324 на двойной частоте среза. На частоте среза звено R4, С2 должно иметь коэффициент передачи 0,66- звено R5 СЗ — 0,92; Rll, C6-OM и R12. С7-0.95. Общая настройка фильтра осуществляется с помощью резисторов R11 и R4. Общий коэффици­ент передачи должен быть равен на частоте среза 0,71, а на двой­ной частоте 0,0071.

Фильтр с регулируемой частотой среза. Активный ФНЧ (рис. 5.8,с) имеет крутизну спада АЧХ вне полосы пропускания 12 дБ/октава. Регулировка крутизны cuaia осуществляется подбо­ром емкости конденсатора С2. Частота среза устанавливается ре­зисторами R2 и R4 (спаренные). Она может плавно меняться от 3 до 34 кГц. Режим ОУ устанавливается резистором R1. Коэффи­циент передачи фильтра равен единице. В диапазоне температур от -20 до +55° С уход частоты среза составляет примерно 4%. Аналогичный фильтр на транзисторах приведен на схеме рис. 5.8,6. Фильтр низкой частоты четвертого порядка. Двухкаскадный ФНЧ (рис. 5.9, и) имеет частоту среза 3,5 кГц. Для настройки фильтра и устранения самовозбуждения схемы необходимо устано­вить коэффициенты передачи ОУ с помощью резисторов R4 и R8.



Элементы фазосдвигающих цепей должны иметь точность 1%. На рис. 5.9, б приведен вид АЧХ фильтра.

Активный ФНЧ с частотой среза 180 Гц. Фильтр построен на основе интегральной микросхемы типа К284УЭ1 (рис. 5.10). Часто­та среза на уровне 3 дБ равна 180 Гц. Крутизна спада АЧХ вне полосы пропускания равна 24 дБ/октава. Коэффициент передачи 0,98. При изменении температуры от — 60 до +70° С коэффициент передачи меняется на 2%. Максимальная амплитуда входного сиг­нала 2 В. Коэффициент нелинейных искажений составляет 0,8% при амплитуде входного сигнала, равной 2 В, и Rн = 8 кОм. Дина­мический диапазон 90 дБ при отношении сигнал-шум, равен 3.



                                          Рис. 5.9



                                          Рис. 5.10



                                          Рис. 5.11



                                          Рис. 5.12

Фильтр низкой частоты с частотой среза 40 Гц. Фильтр низкой частоты шестого порядка (рис. 5.11, а) построен на трех ОУ и име­ет спад АЧХ 36 дБ/октава вне полосы пропускания. Применение элементов с 5%-ным разбросом вызывает отклонение частоты среза на 3%. Подстройка фильтра осуществляется с помощью резисторов Rl. R3 и R5. Форма АЧХ проиллюстрирована на рис. 5.11,6.

Фильтры на микросхеме К284СС2. Фильтр нижних частот (рис. 5.12, а) имеет частоту среза 10 Гц. Крутизна спада АЧХ вне полосы не менее 30 дБ/октава. Неравномерность частотной харак­теристики в полосе пропускания не более 0,2 дБ. Для схемы рис. Ь.12, б частота среза фильтра равна 15 Гц. Крутизна спада АЧХ не менее 42 дБ/октава. Неравномерность частотной характери­стики не более 0,5 дБ.

3. УПРАВЛЯЕМЫЕ ФИЛЬТРЫ

Фильтр с положительной обратной связью. Фильтр ниж­них частот (рис. 5.13, а) имеет большие возможности регулировки формы АЧХ. С помощью сопротивления резистора R2 можно уп­равлять полосой пропускания (рис. 5.13,6). При изменении сопро­тивления резистора R6 сдвигается граничная частота АЧХ и изме­няется коэффициент передачи фильтра на этой частоте (рис. 5.13,6).


Влияние сопротивления резистора R3 на АЧХ показано на рис. 5.13, в. Схема фильтра устойчива и допускает применение эле­ментов с допуском 5%. Коэффициент передачи схемы определяется выражением





                                                          Рис. 5.13

Фильтры с регулируемым АЧХ. Фильтр (рис. 5.14, а) с регули­руемой АЧХ меняет коэффициент передачи в области высоких ча­стот. Частоты, для которых коэффициент передачи равен 0,1 и 0,9, определяются выражениями f1= 1/2пC(R2+R1) и f2=1/2пСR1.

Для схемы рис. 5.14,6, которая осуществляет регулировку в области нижних частот, граничные частоты определяются аналогич­ными выражениями. В схемах желательно применение ОУ, у которых на входе включены полевые транзисторы. Применение ОУ типа К153УД1 ограничивает динамический диапазон регулировки фор­мы АЧХ.



                                          Рис. 5.14



                                          Рис. 5.15

Управляемый фильтр. Фильтр нижних частот (рис. 5.15) имеет управляемую частоту среза. Управление осуществляется за счет уменьшения переменной составляющей в цепи ООС, что вызывает увеличение коэффициента усиления ОУ. При отсутствии управляю­щих напряжений фильтр имеет частоту среза приблизительно 30 Гц. С включением транзистора VT2 от Uупр, равного +5 В, частота среза увеличивается на 40 Гц. На столько же увеличивается часто­та и при включении транзистора VT3.

4. ФИЛЬТРЫ НА МИКРОСХЕМАХ

Перестраиваемый ФВЧ. Схема активного ФВЧ (рис. 5 16) поз­воляет плавно регулировать частоту среза от 300 Гц до 3 кГц. Перестройка фильтра осуще­ствляется с помощью полевых транзисторов VT1 и VT2, ко­торые работают как перемен­ные резисторы. Частота среза АЧХ определяется из выраже­ния



где R10 и R2э — эквивалентные со­противления, образованные па­раллельным соединением ре­зисторов R1 и R2 и сопротив­лений каналов сток — исток полевых транзисторов. Диапа­зон управляющих напряжений от 2 до 3,6 В.


Коэффициент передачи фильтра в полосе пропускания равен 0,96, а коэффициент нелинейных искажений не более 0,7% при входном cm-нале 140 мВ. Крутизна спада АЧХ не менее 40 дБ на декаду.



                   Рис. 5.16                                                          Рис. 5.17

Двухкаскадный фильтр. Фильтр высоких частот на интеграль­ной микросхеме К284УД2 (рис. 5.17, а) имеет частоту среза 80 Гц. Уходы частоты среза в диапазоне температур от +25 до +80° С составляют 0,2%. Форма АЧХ проиллюстрирована на рис. 5.17,6.

5. ФИЛЬТРЫ НА ТРАНЗИСТОРАХ

Активный ФВЧ с инфранизкой частотой среза. Для получения большого входного сопротивления активного элемента применяется составной каскад, в котором на входе использован полевой тран­зистор, а биполярный осуществляет следящую ООС (рис. 5.18, а). Входное сопротивление усилителя около 1,8 МОм, что позволило реализовать малогабаритный фильтр с постоянной времени 4 с. Вы­ходное сопротивление равно 100 Ом. Частота среза характеристики 0,25 Гц. На частоте 0,1 Гц затухание сигнала составляет 33 дБ. Амплитуда входного сигнала не менее 3 В. На графике (рис. 5.18,6) приведена АЧХ фильтра.

Фильтр высоких частот на транзисторах. Активный ФВЧ (рнс. 5.19, а) имеет частоту среза 270 Гц. Вне полосы пропускания фильтра падение коэффициента передачи составляет 15 дБ/октава. Подавление сигналов с частотой ниже 50 Гц достигает 40 дБ. Для R4=R5 = 5,6 кОм и R6=120 Ом при неизменных емкостях кон­денсаторов частота среза будет составлять 150 Гц. На рис. 5.19,6 приведена АЧХ фильтра.



                                          Рис. 5.18



                                          Рис. 5.19



                                          Рис. 5.20

Корректирующий фильтр. Фильтр высоких частот (рис. 5.20, а) имеет частоту среза 1 кГц. Подавление сигналов с частотами ниже 1 кГц происходит за счет ООС, которая осуществляется через транзистор VT1. Глубина этой связи тем больше, чем больше амп­литуда сигнала на конденсаторе С2. Частотную характеристику фильтра можно менять, подключая в эмиттер транзистора VT2 кон­денсатор СЗ. С этим конденсатором возникает подъем характери­стики на частотах выше 5 кГц.


При подключении этого конденса­тора в коллектор транзистора VT2 возникает завал на частотах выше 5 кГц. На рис. 5.20, б приведена АЧХ фильтра для двух зна­чений емкости СЗ.

 

6. ФИЛЬТРЫ С ПОВТОРИТЕЛЯМИ НАПРЯЖЕНИЯ

Двойной Т-образный мост. Характеристики режекторного фильтра, представляющего двойной Т-образный мост (рис. 5.21, а), определяются выражениями коэффициент передачи



фазовая характеристика



где fо=1/2пRС и e=l/Q. На рис. 5.21,6 и в соответственно пред­ставлены АЧХ и ФЧХ для ряда значений Q.

Пассивный фильтр. Для расчета параметров схемы (рис. 5.22) принимается С1 — С и R3 = R, где 2пf0 = I/RC — средняя частота.



                                                          Рис. 5.21

Номиналы других элементов определяются следующим образом: R1 = KR, R2 = 6R, С2 = С/к, C3 = C/b. Условие нулевого затухания на средней частоте fо имеет вид b = к/(к — 1), в то время как усло­вием получения максимума передаточной функции (коэффициент усиления больше 1)



На средней частоте сигнал на входе фильтра находится в фазе с входным сигналом. Максимальный ко­эффициент усиления имеет место, когда к приближается к бесконечности, а b= 1,207. На практике можно принять k=100, тогда коэффициент усиления будет равен 1,2.

Комбинированный двойной Т-образ­ный фильтр. С помощью фильтров (рис. 5.23, а, б) можно регулировать затуха­ние на центральной частоте. Схемы фильтров имеют два входа. Сигнал для входа mUBX получается с помощью усилителя, схема которого приведена на рис. 5.23, в. При изменении положения движка потенциометра т изменяется от +1 до — 1. Усилитель имеет низкое выходное сопротивление и не вли­яет на точность установки центральной частоты фильтра при изме­нении сопротивления резистора R/2.



       Рис. 5.22                                                          Рис. 5.23

Для первого фильтра коэффициент передачи будет определять­ся выражением



где x = w/w0, w0=1/RС.

При x=1, К=т. Для второго фильтра



При х=1 K = m/2.





                               Рис. 5.24                                                          Рис. 5.25

Полосовой фильтр. Фильтр (рис. 5.24, а) содержит два звена ФВЧ и два звена ФНЧ. Для устранения связи между RC в схему введен ОУ, включенный по схеме повторителя. Для увеличения ча­стотной селекции входного сигнала можно последовательно вклю­чить несколько каскадов. Схема включения ОУ приведена в гл. 1. На рис. 5.24, б приведены АЧХ звеньев для ряда значений эле­ментов.

Режекторный фильтр с ОС. Наличие ОС в двойном Т-об­разном фильтре (рис. 5.25) поз­воляет увеличить его доброт­ность- с 0,25 до 30. Централь­ная частота фильтра 50 Гц. На частоте 52 Гц затухание составляет 1- дБ. Если приме­нить регулируемую ОС, введя в цепь эмиттера транзистора VT2 потенциометр, то можно изменять полосу затухания фильтра. В фильтре можно применить интегральную мик­росхему К198НТ4А, которая представляет собой сборку из трех транзисторов.

Комбинированный режекторный фильтр. Двойной Т-образный мост (рис. 5.26, а) имеет частоту режекции 1,5 кГц. При использо­вании в схеме элементов с допуском 5% не удается получить до­статочного подавления сигнала на режекторной частоте. Чтобы увеличить подавление, необходимо подбирать сопротивление рези­стора R6. Ослабление сигнала на режекторной частоте при этом может достигать 103 раз. Частоту режекцин фильтра можно изме­нять подбором сопротивления резистора R2. Изменение частотной характеристики в зависимости от сопротивлений резисторов R1 и R2 показано на рис. 5.26,6.



                                                          Рис. 5.26

7. ФИЛЬТРЫ НА УСИЛИТЕЛЯХ

Фильтр с ООС. В схеме фильтра двойной Т-образный мост включен в цепь ОС (рис. 527). На квазирезонансной частоте 500 Гц полоса пропускания равна 30 Гц. Для перестройки фильтра на дру­гие частоты необходимо изменить номиналы конденсаторов. Кон­денсаторы рассчитываются по формуле С1 — С2 (пФ)=2500/f (кГц), СЗ — 2С1. Точная установка на среднюю частоту осуществляется изменением сопротивления резистора R3. Каскад устойчиво работает при использовании источника сигнала с малым внутренним со­противлением.



 

                   Рис. 5.27                                  Рис. 5.28



                          Рис. 5.29

Мостовой фильтр. Активный полосовой фильтр (рис. 5.28) имеет центральную частоту 70 Гц и полосу пропускания 10 Гц. Коэффи­циент передачи равен 7. При изменении емкостей конденсаторов можно менять центральную частоту. Добротность фильтра на часто­тах до 20 Гц меньше 5.

Фильтр с мостом Вина. Активный фильтр (рис. 5.29, а) позво­ляет ослабить более чем на 60 дБ сигнал, частота которого совпа­дает с частотой настройки моста Вина. Максимальное ослабление достигается при подстройке рези­стора R3. Частоту настройки фильтра можно менять, если вме­сто постоянных резисторов R6 и R7 применить сдвоенный потен­циометр, при этом частота ре­жекции f0=1/2пRбС2=1/2пR7С3. Фильтр работает в диапазоне ча­стот от единиц герц до сотен ки­логерц. Добротность фильтра остается неизменной для любых номиналов резисторов и конденса­торов во всем частотном диапа­зоне. Усилительный каскад в схе­ме фильтров должен обеспечить коэффициент усиления базового сигнала на коллекторе около 2. По­этому сопротивления резисторов R3 и R4 должны быть в два раза больше сопротивления резистора R5. Точность в настройке фильтра приводит к появлению на выходе сигнала с двойной частотой. На рис. 5.29, б приведен вид АЧХ фильтра.



                   Рис. 5.30                                              Рис. 5.31

Усилитель с частотно-зависимой ОС. Усилитель построен по схеме RС-генератора с фазосдвигающей цепочкой (рис. 5.30). Схема не возбуждается, поскольку коэффициент передачи транзистора искусственно снижен. Регулировка коэффициента усиления схемы с помощью резистора R6 позволяет изменять добротность фильтра. Для приведенных на схеме элементов она должна быть больше 20. В фазосдвигающей цепочке с помощью резистора R2 можно регу­лировать резонансную частоту в пределах от 800 Гц до 1 кГц.

Полосовой фильтр. Фильтр построен на ОУ, в цепь ООС кото­рого включен двойной Т-образный мост (рис. 5.31, о).


Резонансная частота моста определяется выражением fo==l/2пR2C2. Максимум усиления фильтра на резонансной частоте зависит от коэффициента усиления ОУ и точности настройки моста. При точности номиналов элементов 0.1% коэффициент передачи фильтра превышает 50 дБ. На рис. 5.31,6 показана АЧХ фильтра.

8. ПОЛОСОВЫЕ ФИЛЬТРЫ

Заграждающий фильтр. Фильтр построен на двойном Т-об­разном мосте, включенном в цепь ОС ОУ (рис. 5.32, а). Централь­ная частота фильтра определяется выражением f0=l/2nRC при С1 = С2=С, СЗ=2С, R1=R2=R, R3=R/2. Желательно иметь следующую точность номиналов элементов: для R — 0,1%, а для С — 1%. Полоса пропускания и амплитуда сигнала регулируются резистором R4. В гл. 1 приведена схема включения ОУ. На рис. 5.32,6 проиллюстрирована возможность изменять пределы регулирования АЧХ фильтра.

Узкополосный селективный фильтр. Селективный фильтр (рис. 5.33, а) имеет центральную частоту, определяемую выраже­нием





                                          Рис. 5.32



                                          Рис. 5.33

Коэффициент передачи фильтра на резонансной частоте K=R1C1/Rs(C1+C2). Добротность фильтра определяется из выра­жения



Настройка фильтра достаточно трудоемка. Регулировка доб­ротности осуществляется с помощью резистора R2. Центральная частйта устанавливается одновременной регулировкой R2 и R3, при сохранении их отношения. При выполнении последнего условия ре­гулировка мало влияет на добротность фильтра. На рис. 5.33,6 приведен примерный вид АЧХ фильтра.

Фильтр с регулируемой цент­ральной частотой. Избирательный $ильтр построен на ОУ, в цепи С которого включена RС-цепь (рис. 5.34). С помощью резисто­ра R6 может меняться централь­ная частота фильтра в пределах от 0,5 до 2,5 кГц. Добротность фильтра можно регулировать ре­зистором R3. Она меняется в пре­делах от 10 до 100. Следует учесть, что применение в схеме резистора R2 с номиналом более 30 кОм нарушает устойчивость схемы. При перестройке центральной частоты фильтра добротность и коэффициент передачи не меняются.


Пропорциональное изменение емкостей конденсаторов С1 — СЗ позволяет изменить частоту на­стройки фильтра в широких пределах от 10 Гц до 100 кГц. В ОУ корректирующий конденсатор емкостью 100 пФ включен между вы­водами 1 и 12.



                   Рис. 5.34                                              Рис. 5.35

Обратный Т-образный мост. При выборе номиналов элементов активного фильтра с двойным Т-образным мостом (рис. 5.35,6) можно руководствоваться описанием элементов эквивалентной схе­мы фильтра на рис. 5.35, а. Комплексные сопротивления плеч моста могут быть записаны Z1=2R+jwRC' и 22= 1/R'w2C2 — j2/wC, где w = 2пf — резонансная частота. В первом случае половина моста эквивалентна индуктивности L9 = RC' при Rb = 2R, а во втором — емкости Сэ = С/2 при Rc = — 1/R'w2С2. Добротность фильтра опре­деляется выражением Q = wL3/RL — |Rc|. Если Rc будет больше RL, фильтр превращается в генератор. Изображенный на рис. 5.35,6 фильтр имеет резонансную частоту 1 кГц, добротность 9.



                                          Рис. 5.36



                                          Рис. 5.37

Управляемый полосовой фильтр. Фильтр (рис. 5.36, а) поз­воляет получить на центральной частоте коэффициент передачи, близкий к нулю. Резистором R4 устанавливается нулевой фазовый сдвиг на центральной частоте. Центральная частота определяется по формуле f0 = З-2/2пRС при R2=R3=R и С1 = С2 = СЗ=С, R4 = R/12. Сопротивление нагрузки фильтра должно быть значи­тельно больше сопротивления резистора R2 (R3). При этом уменьшается падение напряжения на резисторах R2 (R3) и возникает не­которая асимметрия АЧХ. Для центральной частоты f0 = 55 кГц R2 = R3=10 кОм, С1 = С2 = СЗ = 5 НФ, R4 = 820 Ом. На рис. 5.36, б показана форма передаточной характеристики фильтра. Октавный фильтр. Основные параметры фильтра на ОУ (рис. 5.37, а) определяются по формулам





где fо — централь­ная частота. Сопротивление резистора $3 должно учитывать внут­реннее сопротивление источника сигнала. Оно не должно быть больше 10 кОм.


На рис. 5.35, 6 приведен вид ряда АЧХ звеньев фильтра.

9. ПЕРЕСТРАИВАЕМЫЕ ФИЛЬТРЫ

Перестраиваемый фильтр. Узкополосный фильтр (рис. 5.38) построен на базе моста Вина. С помощью резистора R3 можно из­менять добротность вплоть до 2000. Для предотвращения автогене­рации схемы необходимо выполнять условие [(l+R4)/(R3+Ri)]<3, гдеR, — внутреннее сопротивление источника сигнала. Резонансная частота фильтра определяется выражением f0= 1/2п(R1R2ClC2)-2. С по­мощью потенциометров R1 и R2 возможно изменение центральной ча­стоты в пределах от 160 Гц до 1,6 кГц.

Полосовой фильтр второго порядка. Полосовой фильтр (рис. 5.39, а) имеет центральную частоту, определяемую выражением



где Rl =R3 = R и С1 = С2 = С. В этом фильтре ослабление сигнала в обла­сти нижних частот осуществляется конденсатором С1, а конденсатор С2, включенный в цепь ООС ОУ, ослаб­ляет верхние частоты. АЧХ фильтра слабо зависят от сопротивлений ре­зисторов R4, R5. Заметное сужение полосы пропускания фильтра наблю­дается при сопротивлении R5 — — 2 — 3 кОм. При R5=1,5 кОм схема возбуждается. На рис. 5.39, бил проиллюстрированы АЧХ фильтра для ряда значений элементов схемы.



       Pис. 5.38                                              Рис. 5.39

Мостовой фильтр. Центральную частоту фильтра (рис. 5.40, а) можно рассчитать по формуле



где LI = C2 = C. Полоса пропускания определяется Дf=1/пСR3, когда R1 = R2. При изменении сопротивления резистора R2 смещается как центральная частота, так и полоса пропускания. Эта зависи­мость показана на рис. 5.40, б. Коэффициент передачи на цент­ральной частоте определяется формулой K — R3/(R1+R2).

Селективный фильтр на инверторе проводимости. Фильтр по­строен на инверторе проводимости, который собран на ОУ (рис. 5.41). Частотная характеристика фильтра определяется цепоч­ками Ri, Ci и Rz, Cz. Центральная частота фильтра может быть найдена из выражения f0 = 2п/R1Cl при R1 = R5, C1 = C2. Коэффициент передачи на резонансной частоте равен К.о = n/(2—n), где n= (R2+аR3)/[R4+(1 — а)R3].


Добротность фильтра определяется выражением Q=l/(2 — n). Для указанных на схеме номиналов элементов центральная частота равна 1 кГц. Добротность фильтра можно регулировать с помощью резистора R3. Фильтр устойчиво работает при Q=100.



                               Рис. 5.40                                                          Рис. 5.41



                          Рис. 5.42

Фильтр с регулируемой частотой и добротностью. Фильтр по­строен на двух микросхемах (рис. 5.42), причем DA2 с прилегаю­щими к ней элементами работает в качестве эквивалентной индук­тивности.

Средняя частота фильтра определяется по формуле



[Гц), а ширина полосы пропускания по формуле



Для тех номиналов элементов, которые указаны на схеме, средняя частота может регулироваться с помощью резистора R2 в пределах от 1 до 10 кГц. Добротность фильтра регулируется резистором R1. Она может меняться в пределах от 2 до 200. Коэф­фициент передачи для средних частот от 1 до 10 кГц не меняется и равен единице. Максимальная амплитуда входного сигнала 0,5 В. Для получения фильтра на другие средние частоты следует подхо­дить к выбору номиналов элементов схемы с учетом того, что со­противление резистора R1 должно быть менее 400 кОм, сопротив­ления резистора R2 — между 1 и 40 кОм. Значение R4С3/R3С2 должно лежать в пределах от нуля до (R2/R1) 10-2. Постоянные времени R4C3 и R3C2 можно отрегулировать, если резистор R4 сде­лать переменным. Фильтр настраивается при разомкнутом входе, что соответствует максимальной добротности. Увеличением сопро­тивления резистора R4 добиться самовозбуждения схемы. После этого можно уменьшить сопротивление резистора R4 или парал­лельно ему подключить резистор с сопротивлением больше 100 кОм. Автоколебания при этом прекращаются.



ГЕНЕРАТОРЫ НА МИКРОСХЕМАХ


Генератор с управляемой частотой выходного сигнала. Генера­тор (рис. 9.12, а) построен на ОУ DA1, в цепь Обе которого вклю­чен мост Вина. Резистор R1 этого моста подключен ко входу вто­рого ОУ, который выполняет функции преобразователя ток — напряжение. Ток, протекающий через резистор R1, преобразуется в пропорциональное напряжение, которое меняет сигнал ООС. С по­мощью преобразователя на ОУ DA2 в генераторе осуществляется стабилизация сигнала по фазе. Наличие этого каскада позволяет менять частоту генератора при изме­нении сопротивления резистора R1 в широком диапазоне. Зависимости частоты от сопротивления R1 при­ведены на рис. 9.12, б, в. Изменение сопротивления R1 практически не приводит к появлению искажений в выходном сигнале. Для возбужде­ния генератора необходимо подби­рать сопротивление резистора R2. При этом с увеличением сопротивле­ния резистора R1 необходимо увели­чивать сопротивление резистора R2. Генератор гармонического сигнала. Указанные на схеме (рис. 9.13) номиналы элементов формируют на выходе гармониче­ский сигнал с частотой 1 кГц. Для устранения нелинейных искаже­ний выходного сигнала необходимо подбирать резистор R1. Ампли-туда выходного сигнала более 2 В.

                               Рис. 9.12                                                                      Рис. 9.13

                                           Рис. 9.14

Генератор на двух фильтрах. Генератор (рис. 9.14, а) построен на двух фильтрах: ФНЧ — R5, С1 и ОУ DAI и ФВЧ — R6, С2 и ОУ DA2. В общей схеме эти фильтры формируют резонансную ха-оактеоистику с центральной частотой

при

Ky.u1 = R2/R1, Kу.u2=R4/R3 и Ky.u1 = Ky.u2=l. В схеме возникают колебания, если общий коэффициент усиления превышает единицу. При изменении коэффициента усиления ОУ DA1 меняется форма его частотной характеристики и изменяется частота выходного сиг­нала. В равной степени это относится и ко второму, ОУ. Частоту выходного сигнала генератора можно также менять с помощью регулировки любого элемента фильтров.
Зависимость частоты вы­ ходного сигнала от параметров схемы проиллюстрирована на гра­фиках рис. 9.14, б.

4. ГЕНЕРАТОРЫ МНОГОФАЗНЫХ СИГНАЛОВ

Трехфазный генератор. Генератор гармонического сигнала (рис. 9.15) построен на ОУ DA1. На выходе ОУ DA1 существует сигнал с амплитудой 3 В и частотой 1 кГц. В цепь ОС генератора включена фазосдвигающая цепь. Через резисторы R3 и R4 проте­кают гармонические токи, сдвинутые по фазе относительно сигнала на Выходе 1. Поскольку резисторы R3 и R4 подключены ко вхо­дам ОУ DA2 и DA3, то выходные сигналы этих усилителей также будут иметь фазовые сдвиги. Сигнал на Выходе 2 будет сдвинут по фазе на 30°, а сигнал на Выходе 3 — на 60°. Для получения сиг­налов с другой частотой необходимо использовать элементы, рас­считанные по формуле f0 = 1/2пRС 3-2 при R2 = R3 — R4 = R; С1 = С2=СЗ = С, а R1>4/RС2w02 при R1=12R.

Генератор многофазных сигналов. Генератор (рис. 9.16) собран на двух ОУ, которые преобразуют входной однофазный сигнал в два противофазных. Выходные сигналы ОУ поступают на фазосдви-гающую цепочку R4, С1. В т. 1 напряжение будет сдвинуто на угол АДК (эпюра 1, 2). На этой эпюре показаны следующие сигналы: сигнал на резисторе R4 представлен вектором КА, а сигнал на конденсаторе — вектором ВК, результирующий сигнал — вектор ДК. Такое распределение сигналов соответствует частоте 1 кГц. Изме­нением сопротивления резистора R4 можно поворачивать резуль­тирующий вектор на любой угол. Значение этого угла определяется следующим выражением ф=180° — 2 arctg l/wRC.

Выходной сигнал с цепочки R4, С1 подается на последующие фазосдвигающие-цепочки R7, С2; R8, СЗ; R9, С4. Выходные сигна­лы этих цепочек относительно т. 3 показаны на соответствую­щих эпюрах: угол КОН=30°, угол КОМ =150°, угол КОС = = 90°. Результирующая эпюра 6 характеризует распределение сиг­налов относительно друг друга.

Формирователь многофазных гармонических сигналов. На входе формирователя (рис. 9.17) действуют сигналы: 1-sinwt; 2-sin(wt-120°); 5 - sin (wt-240°) На основе этих сигналов с по­мощью суммирования на вхвде ОУ можно получить дополнительно три гармонических сигнала.

и далее производить суммирование различных


Если первый сигнал просуммировать с0,5 sin (wt — 120°), то получим сигнал 5 — 0,866 cos (wt — 120°). Сум­мирование второго сигнала с 0,5 sin (wt — 240°) дает сигнал 6 — 0,866 cos(cof — 240°). Третий сигнал совместно с 0,5 sinwt формирует сигнал 4 — 0,866 cos wt. Если и далее производить суммирование различных сигналов с соответствующими амплитудами, то можно построить широкую сетку многофазных сигналов. В этой схеме фаза не зависит от частоты входных сигналов. Схема может работать до граничных частот ОУ.



                   Рис. 9.15                                              Рис. 9.16



                                          Рис. 9.17

5. ГЕНЕРАТОРЫ С УПРАВЛЯЕМОЙ АМПЛИТУДОЙ СИГНАЛА

Управляемый генератор. Генератор низкой частоты (рис. §Л8) собран на транзисторе VT2. В нем отсутствуют колеба­ния» если транзистор VT1 закрыт. Коллекторное напряжение закрытого транзистора VT1 откры­вает диод, через который за­мыкается ООС. С приходом положительного напряжения на базу транзистора VT1 в его коллекторе будет напряже­ние, близкое к нулю. Диод закрыт. В генераторе возни­кают гармонические колебания. Для тех номиналов элементов, которые указаны на схеме, выходной сигнал имеет часто­ту 1 кГц.



                   Рис. 9.18

Ждущий генератор. Гене­ратор, собранный на мосте Ви­на (рис. 919), формирует на выходе сигнал, если на входе присутствует импульс положительной полярности. Входной сигнал с амплитудой 5 В открывает транзистор VT1. Во время действия это­го сигнала оба транзистора находятся в линейном режиме В схеме возникают гармонические колебания, частота которых определяется выражением f=1/2 п(R2С2)-2 при C2=C3 и R2 = R4 и может нахо­диться в пределах от 100 Гц до 100 кГц Амплитуда гармонических колебаний находится в прямой зависимости от амплитуды импульса входного сигнала. Если во время действия импульса амплитуда гармонического сигнала возрастает, то следует увеличить глубину ООС регулировкой резистора R7. По окончании действия управля­ющего импульса транзисторы закрываются и генерация срывается Генератор на фиксированную частоту.

1 Гц до 100 кГц


Генератор низкочастот­ных колебаний (рис. 9 20) в диапазоне от 1 Гц до 100 кГц построен на мосте Вина. Коэффициент гармоник может быть получен меньше 0,5%. Автоматическая регулировка усиления осуществляется термо­резистором $3 Частота выходного сигнала определяется емкостями конденсаторов С1 и, С2. f ~ 0,3 С, где f — в килогерцах, С — в пи-кофарадах.

Генератор с диодной стабилизацией амплитуды. Генератор низ­кочастотных колебаний (рис. 921) построен на ОУ с мостом Вина в цепи ПОС Для стабилизации режима работы генератора в схему включены два диода. Последовательно включенный резистор R6 уменьшает нелинейные искажения. Лучшим способом регулировки



                          Рис. 9.19



       Рис. 9.20                                  Рис. 9.21

Частоты является замена двух конденсаторов. Амплитуда выходно­го сигнала не меняется от частоты. Ома постоянна с точностью 0,5 дБ в полосе с коэффициентом перекрытия 105. Частота сигнала определяется по формуле f~0,05 С, где f — в килогерцах, С — в пи-кофарадах.

Регулировка амплитуды с помощью полевого транзистора. В цепь ПОС ОУ (рис. 922) включен мост Еина. Для стабилизации амплитуды выходного сигнала применяется полевой транзистор, ко­торый работает в качестве переменного сопротивления. При нулевом напряжении на затворе сопротивление транзистора близко к значе­нию 1/S, при S — крутизна характеристики транзистора. Коэффи­циент усиления усилителя будет определяться выражением Kyu = SR2. При большом коэффициенте усиления в схеме возни­кают гармонические колебания Выходной сигнал ОУ детектируется с помощью цепочки VD, R5, R4, СЗ. Положительное напряжение детектора является закрывающим для полевого транзистора, а при закрывании сопротивление полевого транзистора увеличивается. В результате коэффициент усиления ОУ уменьшается и амплитуда генератора будет стабилизироваться на определенном уровне. Ча­стота сигнала определяется формулой f=l/2пR1C1. Схема позво­ляет получить сигналы с частотой от 1 Гц до 100 кГц.


ходим для запуска генератора. Как




       Рис. 9.22                                  Рис. 9.23



                                          Рис. 9.24

Стабилизация амплитуды сигнала с помощью светодиодов. Ко­эффициент усиления ОУ (рис. 923) устанавливается с помощью ре­зисторов R3 и R4 и равен 3,2. Такой коэффициент усиления необ­ ходим для запуска генератора. Как только амплитуда гармониче­ского сигнала увеличится до 1,6 В, открываются диоды и возникает цепь дополнительной ООС. Коэффициент усиления падает, и ампли­туда гармонического колебания стабилизируется на определенном уровне. Искажения, вносимые схемой стабилизации, не превышают уровня 1%. Амплитуда выходного сигнала регулируется от 2 до 5В. Частота зависит от элементов моста Вина и может принимать зна­чения от единиц герц до сотен килогерц.

Генератор с двухзвенной фазосдвигающей цепью. В генераторе (рис. 9.24,а) стабилизация амплитуды выходного сигнала осуще­ствляется с помощью диодов. Кроме того, потенциометрами R2 и R7 можно регулировать стационарную амплитуду выходного сигнала и тем самым уменьшать нелинейные искажения, связанные с ограни­чением сигнала. Резистор R2 регулирует коэффициент усиления, а резистор R7 управляет коэффициентом усиления за счет изменения положения рабочей точки.

В генераторе можно менять частоту с изменением номиналов конденсаторов или резисторов. Зависимость частоты выходного сиг­нала от емкости конденсатора С2 показана на рис. 9.24,6.

6. МНОГОЗВЕННЫЕ ГЕНЕРАТОРЫ

Генератор с двойным мостом. Генератор (рис. 9.25) по­строен на двойном Т-образном мосте, включенном в цепь ООС. На частоте режекции моста возникают колебания. На этой частоте эквивалентное сопротивление моста стремится к бесконечности. Ча­стота выходного сигнала определяется по формуле f=l/2пRC при R=R4=R5; С=С1 = С2; R6= =R/2; C3=C/2. Генератор мо­жет работать на частотах до 100 кГц. Коэффициент гармоник менее 5%.

Генератор с высокочастотной линией. Фазосдвигающая цепоч­ка генератора (рис. 9.26, а) со­стоит из нескольких uRC-звеньев.

В схеме возникают гармонические колебания,


В схеме возникают гармонические колебания, частота которых зави­сит от числа и характеристиче­ского сопротивления RС-звеньев. Эта зависимость приведена на рис. 9.26,6. Если коэффициент усиления ОУ большой, то форма сигнала имеет нелинейные искажения. С помощью резистора R13 можно изменять коэффициент усиления ОУ и добиться практически гармонической формы выходного сиг­нала Уменьшение нелинейных искажений сигнала можно получить также изменением рабочей точки ОУ с помощью резистора R16 Сов­местная подстройка этих потенциометров позволяет уменьшито коэффициент гармоник до 1% Если снимать сигналы с резисторов Rl — R11, то можно получить выходной сигнал с фиксированным фазовым сдвигом от 0 до я с дискретностью п/10.



       Рис. 9.25                                                                                  Рис. 9 26

Генератор с низкочастотной линией. В основу генератора (рис 927, а) положена длинная- фазосдвигаюшая цепь Колебания в схеме возникают за счет большого коэффициента усиления ОУ На выходе ОУ формируется сигнал прямоугольной формы По мере продвижения сигнала по RC цепям форма его меняется Если на конденсаторе С1 он имеет форму, трапеции, в последующих цепях треугольную, то на оконечных — гармоническую форму Высшие спектральные составляющие прямоугольного сигнала отфильтровы ваются Степень ослабления этих гармонических составляющих за­висит от количества RC звеньев На выходе схемы присутствует гармонический сигнал, амплитуда которого практически не меняет­ся при изменении емкости конденсатора С1, определяющего частоту сигнала (см график рис 9 27, б)

Управляемый генератор на интегральной микросхеме К226УС4Б. Фазосдвигающая цепочка генератора (рис 9 28) состоит из конден­саторов С4 и С5 и сопротивлений полевых транзисторов VT1 и VT2 Частота генерации Определяется выражением w = (U0 — U3 )/RTCU0, где Rr — сопротивление полевого транзистора при напряжении на затворе, равном нулю, U0 — напряжение отсечки полевого транзи­стора; U3 — управляющее напряжение в затворе.

Эта формула справедлива при условии,


Эта формула справедлива при условии, что характеристики полевых транзисто­ров близки друг другу. Для уменьшения нелинейных искажений ге­нерируемых колебаний применяется ОС, осуществляемая через рези­сторы R3 — R6, которая выравнивает зависимость сопротивления полевого транзистора от напряжения в затворе Кроме того в схе­му введена еще одна цепь ООС, влияющая на форму колебаний. Эта связь выполнена на терморезисторе R8.



                                                          Рис. 9.27



                   Рис. 9.28                                  Рис. 9.29

С помощью полевых транзисторов можно перестраивать часто­ту генератора почти в 100 раз. Однако на краях диапазона наблю­дается значительное искажение формы колебаний.

Двухтактный генератор. Генератор (рис. 9 29) собран по двух­тактной схеме В коллекторы транзисторов включен колебательный контур. При заданной индуктивности частота выходного сигнала может меняться дискретно подключением конденсаторов. Резистор R1 позволяет точно настраиваться на фиксированные частоты Об­ратная связь осуществляется через резисторы R2 и R3. Амплитуду выходного сигнала можно регулировать с помощью резистора R8 Для установки частоты генератора с помощью С1, С2 можно поль­зоваться данными, приведенными в табл. 9.1.

Таблица 9.1

f, Гц

700

900

1100

1300

1500

1700

С1, нФ

60

60

60

4,5

2,25

1,5

С2, нФ

200

160

110

70

50

40



ГЕНЕРАТОРЫ СИГНАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ


Генераторы находят применение в измерительной технике, в моделирующих и решающих устройствах, в системах кодирования и декодирования сигналов. С помощью этих сигналов осуществля­ются настройка и коррекция узлов приемных устройств. В частности, они могут служить для управления частотой гетеродинов.

Применяются они и в качестве опорных сигналов при выделении полезного сигнала из шумов.

Сигналы специальной формы можно формировать двумя спосо­бами: дискретным и аналоговым. Дискретный способ формирования основан на импульсных схемах, которые формируют весовые токи или напряжения. Суммирование весовых величин в определенной последовательности позволяет получить сигналы любого вида. Ана­логовый способ формирования различных сигналов значительно про­ще дискретного, но его возможности значительно ограничены. Этот способ применяется в основном при формировании сигналов тре­угольного и трапецеидального вида. Эти сигналы получили наиболь­шее распространение. Существует большое число устройств, формирующих эти сигналы. Многие из схем обладают малым коэффици­ентом нелинейности. В наиболее совершенных устройствах коэффи­циент нелинейности составляет десятые доли процента. В основу их положен принцип заряда конденсатора постоянным током. Слож­ность схемы определяется линейностью выходного сигнала. Очень часто схемы должны обеспечивать достаточно большой ток в на­грузке. Так, в телевизионных отклоняющих системах ток должен быть более 1 А. Схемы включения ОУ, которые применяются в уст­ройствах, можно найти в гл. I.

1. ИМПУЛЬСНЫЕ ГЕНЕРАТОРЫ

Формирователи с генератором тока. Управляемые генера­торы пилообразного сигнала (рис. 11.1) используют заряд конден­сатора от генератора постоянного тока. В первой схеме генератор построен на биполярном транзисторе, а во второй — на полевом. Коллекторный ток биполярного транзистора определяется резисто­ром R3 и опорным напряжением стабилитрона VD1. Амплитуда вы­ходного сигнала определяется выражением U = Iк/fС, где f — ча­стота импульсов входного сигнала.
Максимальная амплитуда вы­ходного сигнала будет равна 4 В. Для увеличения амплитуды необ­ходимо увеличить напряжение источника питания. Во второй схеме ток полевого транзистора определяется Iс= (Uo/R1)C, где Uo — пороговое напряжение полевого транзистора.

Генераторы на однопереходном транзисторе. Простым генера­тором пилообразного напряжения является -схема, построенная на однопереходном транзисторе (рис. 11.2, а). Пилообразное напряже­ние формируется на конденсаторе С1. Зарядный ток конденсатора определяется резисторами R3 и R4. При изменении емкости конден­сатора С1 от 1 мкФ до 200 пФ частота повторения импульсов ме­няется от 10 Гц до 200 кГц. С помощью резистора R3 частоту импульсов можно менять в 50 раз. Коэффициент нелинейности пилообразного напряжения менее 10%.

Для получения сигнала пилообразной формы с линейностью око­ло 1 — 3% следует применять схему рис. 11.2,6. В этой схеме кон­денсатор С1 заряжается от генератора тока, собранного на тран­зисторе VT2. Управление зарядным током осуществляется рези­стором R3.



                                                          Рис. 11.1



                                                          Рис. 11.2

На рис. 11.2, в изображена схема генератора, на выходе кото­рого формируется спадающее пилообразное напряжение. Заряд кон­денсатора С1 осуществляется через резистор R3 и диод VD1. Транзисторы VT1 и VT2 в это время закрыты. При определенном напряжении на конденсаторе открывается транзистор VT1 и закры­вается диод. На резисторе R2 появляется напряжение, которое открывает транзистор VT2. Через этот транзистор начинает проте­кать ток, который линейно разряжает конденсатор. Напряжение на конденсаторе падает. К концу разряда диод открывается, ток эмит­тера транзистора VT1 уменьшается и рабочая точка, расположен­ная на падающем участке вольт-амперной характеристики, стано­вится нестабильной. Это вызывает регенеративный процесс умень­шения тока и быстрое выключение транзистора.


После этого про­цесс повторяется.

Если вместо резистора R3 на рис. 11.2, в поставить генератор тока, как показано на рис. 11.2,6, то можно получить выходной сигнал треугольной формы. В этой схеме заряд и разряд конденса­тора осуществляется генераторами тока. Плавно меняя зарядные и разрядные токи с помощью резисторов R3 и R4, можно менять фронт сигнала.

Генераторы на лавинных транзисторах. Для получения сигна­лов пилообразной или треугольной формы можно применять схемы, в которых управляющим элементом является транзистор, работаю­щий в режиме лавинного пробоя. В схемах на рис. 11.3 применены транзисторы интегральной микросхемы К.101КТ1А.

На рис. 11.3.а приведена схема генератора сигнала треугольной формы. В этой схеме транзисторы используются в инверсном вклю­чении. На выходе формируется сигнал с амплитудой 4 — 5 В и частотой 7 кГц. Другая схема, рис. 11.3, б, используют нормальное вклю­чение транзисторов. Амплитуда выходного сигнала может доходить до 60 В при частоте 100 кГц. В этих схемах происходит поочеред ное включение транзисторов. Конденсатор поочередно заряжается через резисторы R1 и R2. Высокая идентичность параметров тран­зисторов позволяет получить хорошую симметрию треугольного сигнала.



                                          Рис. 11.3

Для получения сигналов ступенчатой формы можно применить схемы, изображенные на рис. 11.3, в, г. На рис. 11.3, г изображен управляемый генератор, который формирует сигнал при поступлении на вход отрицательного импульса. Этот импульс закрывает нижний транзистор. Верхний транзистор, включенный в инверсном режиме, открывается, когда на конденсаторе С1 напряжение возрастет при­мерно до 8 В. В результате открывания верхнего транзистора про­исходит заряд конденсатора С2. Когда потенциалы этих конденса­торов сравняются, верхний транзистор закроется. Такой процесс происходит до тех пор, пока на конденсаторе С2 напряжение будет меньше пробоя нижнего транзистора. Нижний транзистор включен в нормальный режим, и его потенциал пробоя лежит в районе 40 В.


При этом напряжении нижний транзистор открывается и разря­жает конденсатор С2. На выходе формируется сигнал ступенчатой формы: амплитуда около 20 В, частота следования сигнала 2,5 кГц, длительность ступеньки 20 мкс, время нарастания 1 мкс, число сту­пенек 20.

2. ГЕНЕРАТОРЫ СИГНАЛА ПИЛООБРАЗНОЙ ФОРМЫ

Кадровая развертка. Задающий генератор пилообразного напряжения (рис. 11.4) собран на транзисторах VT1 и VT2. При включения питающего напряжения конденсаторы С1 и С2 заряжа­ются. Через базовые цепи транзисторов протекают токи, которые выводят транзисторы в режим насыщения. Спустя некоторое время зарядный ток конденсаторов уменьшится и достигнет такого значе­ния, при котором один из транзисторов выйдет из насыщения. Изменение напряжения в цепи коллектора транзистора VT1 закроет транзистор VT2. В результате конденсатор С1, включенный в цепь ООС, будет медленно разряжаться через коллекторную цепь тран­зистора VT1. Так как отрицательно заряженная обкладка конден­сатора С1 подключена к базе транзистора VT1, при разряде конденсатора уменьшается ток базы и в результате автоматически уста­навливается такое соотношение между токами коллектора и базы, которое точно равно коэффициенту передачи тока транзистора. За все время разряда конденсатора ток базы и напряжение на базе меняются незначительно. Ток через резисторы R1 и R2 остается постоянным и не зависит от процессов, протекающих в устройстве. Таким образом, во время прямого хода в генераторе имеется глубо­кая ООС, поддерживающая постоянным ток разряда конденсатора С1, а следовательно, и высокую линейность пилообразного напря­жения. Поскольку коэффициент передачи тока транзистора меняет­ся в зависимости от приложенного напряжения (в первоначальный момент на 1 — 2%), то и нелинейность сигнала будет характеризо­ваться таким же значением. Процесс разряда конденсатора прекра­щается при таких напряжениях на коллекторе, которые требуют для управления током коллектора значительного увеличения тока базы.


Коэффициент передачи тока транзистора резко падает. В этом слу­чае на базе транзистора VT2 значительно уменьшается закрываю­щий сигнал. Транзистор VT2 открывается. В его коллекторе появ­ляется положительное напряжение, открывающее транзистор. Воз­никает лавинообразный процесс. Оба транзистора открыты. Цикл работы повторяется.



                               Рис. 11.4

Приведенные на схеме номиналы элементов формируют на вы­ходе сигнал с амплитудой больше 10 В и с частотой 50 Гц. Для регулирования амплитуды выходного сигнала и его линейности служат резисторы R7 и R8 соответственно. Резистор R1 меняет ча­стоту задающего генератора.

Генератор двухполярного пилообразного сигнала. Генератор пилообразного сигнала с регулируемым наклоном (рис. 11.5) состо­ит из двух интегрирующих цепочек R5, С1 и R2, С2 и порогового элемента, построенного на транзисторах VT1 и VT2. При включении питания на базе транзистора VT2 возникает сигнал 10 В. По мере заряда конденсатора С1 напряжение уменьшается. В это время на­пряжение на базе транзистора VT1 увеличивается. На разных кон­цах потенциометра существуют сигналы с различными фронтами. Когда напряжение на базах транзисторов VT1 и VT2 сравняется, они откроются и произойдет разряд конденсаторов. После этого начнется новый цикл работы генератора. Наклон выходного пило­образного сигнала можно регулировать с помощью потенциометра в широких пределах.



                          Рис. 11.5



                          Рис. 11.6

Управляемый генератор. Генератор пилообразного сигнала (рис. 11.6, а) построен по схеме интегратора с большой постоянной времени, которая определяется выражением т = h21ЭC1R4 где h21э — коэффициент передачи тока транзистора VT1. Транзистор VT1 медленно открывается: конденсатор С1 включен в цепь ООС. Напряжение в цепи коллектора уменьшается. В некоторый момент открывается диод VD2 и шунтирует вход транзистора VT2. Тран­зистор VT2 закрывается. Для ускорения процесса закрывания в его коллектор включена динамическая нагрузка — транзистор VT3. Через эмиттер транзистора VT3 конденсатор С1 быстро заряжается.


В ре­ зультате обратный ход пилообразного сигнала сведен к минимуму. Его длительность составляет менее 5 икс. Длительность пилообраз­ного сигнала можно регулировать с помощью базового тока тран­зистора VT1 (рис. 11.6,6).

Генератор пилообразного сигнала на интеграторе. В основу ге­нератора (рис. 11.7) положен интегратор на транзисторе. В качест­ве порогового и усилительного элементов используется интегральная микросхема К122УД1. Порог срабатывания микросхемы, равный 3 В, устанавливается делителем Rl, R2. При включении питания в коллекторе транзистора напряжение не может измениться скач­ком. Отрицательная обратная связь через конденсатор формирует на выходе линейно нарастающий сигнал. Постоянная времени равна т=h21ЭR3С2, где h21Э — коэффициент передачи тока транзистора. Когда напряжение на коллекторе достигнет 3 В, интегральная мик­росхема переключится. Положительное напряжение на выводе 5 пройдет через диод и откроет транзистор. Произойдет разряд кон­денсатора С2. На коллекторе вновь появится нулевой потенциал.



                   Рис. 11.7

Схема начнет новый цикл работы. Схема с указанными номиналами элементов формирует выходной сигнал с амплитудой 3 В, частотой следования 100 Гц и длительностью заднего фронта 0,1 мс.

Запускаемый генератор двухполярного сигнала. Для получения высоковольтного сигнала пилообразной формы в генераторе (рис. 11.8) применяют два каскада, на выходах которых формиру­ются падающий и нарастающий сигналы. Каждый каскад состоит из двух транзисторов. Транзисторы VT2 и VT4 являются сбрасыва­ющими, a VT1 и VT3 — активными элементами, в коллекторах ко­торых формируются выходные сигналы. После включения питания напряжение на коллекторе транзистора VT3 не может скачком из­мениться. Этому препятствует ООС через конденсатор С2. Напря­жение на коллекторе будет медленно нарастать. Скорость увеличе­ния напряжения определяется постоянной времени т=Л21Э Cz(Ru-{-+Rт), где hzi Э — коэффициент передачи тока транзистора.


Рези­стор R7 является ограничивающим. В другом каскаде в первый мо­ мент появляется напряжение 100 В. Далее напряжение уменьшается и стремится к нулю. Сброс напряжения в коллекторе транзистора VT1 происходит в тот момент, когда приходит входной импульс. В это время открывается транзистор VT4. Импульсный сигнал с конденсатора С4 проходит на базу транзистора VT2 и открывает его. Происходит одновременный сброс конденсаторов С1 и С2.



                               Рис. 11.8

Генератор пилообразного сигнала с регулируемой линейностью. В основу генератора (рис. 11.9) положен принцип заряда конденсатора С2 стабилизированным током. Стабилизатор тока построен на транзисторе VT2. Сигнал с конденсатора С2 поступает на вход эмиттерного повторителя. При формировании пилообразного сигнала напряжение на конденсаторе увеличивается. Одновременно с повы­шением напряжения на конденсаторе увеличивается ток базы тран­зистора VT3. В результате конденсатор заряжается не постоянным током, как того требует линейное нарастание напряжения, а током, уменьшающимся во времени. На заряд конденсатора влияет входное сопротивление эмиттерного повторителя. Для получения пилообраз­ного напряжения необходимо скомпенсировать ток базы транзисто­ра. Этого можно достигнуть цепью ОС, связывающей эмиттеры тран­зисторов VT2 и VT3. С увеличением выходного сигнала эмиттерного повторителя увеличивается эмнттерный ток транзистора VT2. Меняя сопротивление резистора R9 в цепи ОС, мы можем добиться возра­стающей или убывающей формы выходного сигнала.



                          Рис. 11.9

Для разряда конденсатора в схеме применяется блокинг-генера-тор. Во время заряда конденсатора диод закрыт питающим напря­жением. Когда транзистор VT1 открыт, конденсатор С2 разряжает­ся через диод VD1. Амплитуда выходного сигнала регулируется ре­зистором R5, а частота — резистором R1. Максимальная амплитуда равна 15 В.

3. УПРАВЛЯЕМЫЕ ГЕНЕРАТОРЫ

Генератор на полевом транзисторе. В основу генератора (рис. 11.10) положен заряд конденсатора-постоянным током, кото­рый задается полевым транзистором VT4. Скорость заряда конден­сатора определяется резистором R10. Нарастающее напряжение подается на базу транзистора эмиттерного повторителя, выход ко­торого подключен к триггеру — транзисторы VT1 и VT2. Выходной сигнал триггера поступает на базу транзистора VT3 для сброса напряжения на конденсаторе.



В исходном состоянии транзисторы VT2 и VT3 закрыты. Как только напряжение на конденсаторе достигнет б В, срабатывает триггер и открывается транзистор VT3. Конденсатор разряжается через открытый транзистор. При уменьшении напряжения на кон­денсаторе до 1 В триггер возвращается в исходное состояние. На­чинается новый цикл заряда конденсатора.

Приведенные на схеме номиналы элементов позволяют регули­ровать частоту выходного сигнала от 15 до 30 кГц. Если поставить конденсатор емкостью 0,033 мкФ, то частота выходного сигнала рав­на 1 кГц.

                                        


                   Рис. 11.10                                                        Рис. 11.11

Генератор сигнала треугольной формы на ОУ. В схеме рис. 11.11 на конденсаторе С формируется сигнал треугольной фор­мы с амплитудой 0,6 В. Заряд и разряд конденсатора осуществля­ются выходным сигналом ОУ, который автоматически меняется в тот момент, когда напряжение на конденсаторе достигает порога открывания. Порог открывания устанавливается делителем R2 и R3. Частота следования выходного сигнала определяется выражени­ем f=l/4R1C. Для выравнивания наклонов фронта и спада выход­ного сигнала служит резистор R6.

Формирователь треугольного сигнала. Формирователь рис. 11.12 позволяет получить на выходе сигнал треугольной формы. Амплиту­да сигнала достигает 90% напряжения питания при достаточно вы­сокой линейности фронтов.

В основу формирователя положен принцип заряда и разряда конденсатора через генераторы тока, построенные на транзисторах. Коллекторные токи транзисторов определяются опорными напряже­ниями стабилитронов и эмиттерными резисторами. При отсутствии входного сигнала через транзисторы должны протекать равные токи. Если равенство токов не выполняется из-за разброса номиналов стабилитронов и резисторов, то следует подстроить резистор R4. Появление входного сигнала с амплитудой больше напряжения про­боя стабилитронов вызовет разбаланс коллекторных токов.


Поло­ жительная полуволна входного сигнала уменьшит ток транзистора VT2. Ток транзистора VT1 останется без изменения. Разностный коллекторный ток будет заряжать конденсатор. С приходом отри­цательной полуволны уменьшится коллекторный ток транзистора VT1. Ток транзистора VT2 установится номинальным. Конденсатор будет разряжаться током транзистора VT2. Если амплитуда вход­ного сигнала меньше напряжения питания, то наблюдается прямая зависимость между амплитудами входного и выходного сигналов, а если больше напряжения питания, то амплитуда выходного сиг­нала постоянна.

Емкость конденсатора рассчитывается по формуле С= 103I/2fUmах (мкФ), где I — ток транзистора; f — частота вход­ного сигнала; Umax — амплитуда выходного сигнала.



       Рис. 11.12                                Рис. 11.13                                Рис. 11.14



                          Рис. 11.15

Широкодиапазонный генератор сигнала треугольной формы. Ге­нератор сигнала треугольной формы (рис. 11.13) позволяет полу­чить частоту от 0,01 Гц до 0,1 МГц. Выходной сигнал 20 В формируeтся на конденсаторе С4 коллекторными токами транзисторов VT4, VT6. При заряде конденсатора транзисторы VT4 и VT5 откры­ты, а транзисторы VT3 и VT6 закрыты. Когда напряжение на кон-денсаторе возрастет до уровня, определяемого делителем R1 — R3 транзистор VT1 откроется. Следом за ним откроются транзисторы VT3 и VT6, которые закрывают транзисторы VT4 и VT5 Начнется процесс разряда конденсатора через транзистор VT6 По достиже­нии нижнего уровня откроется транзистор VT2. Этот процесс воз-вращает схему в первоначальное состояние. Вновь начинается заряд конденсатора. Частота выходного сигнала может линейно меняться с помощью резистора R5 с перекрытием в 20 раз. Для конденсатора емкостью 1 нФ и при R5 = 510 кОм частота равна 001 Гц

Формирователь ступенчатого сигнала. В исходном состоянии (рис. 11 14) конденсатор заряжен до напряжения питания Все тран­зисторы закрыты. Входной импульс положительной полярности от­крывает транзистор VT1. Через этот транзистор протекает ток ко­торый разряжает конденсатор.


Напряжение на конденсаторе умень­шается. Второй входной импульс также разрядит конденсатор на дискретное значение напряжения. В результате этого каждый им­пульс будет ступеньками уменьшать напряжение на конденсаторе Как только напряжение на конденсаторе сравняется с напряжением на делителе R4, R5, открывается транзистор VT2 и наступает ре­лаксационный процесс в составном каскаде. Транзисторы VT2 и VT3 открываются. Происходит процесс заряда конденсатора После этого начинается новый цикл разряда конденсатора.

Генератор трапецеидального сигнала с регулируемой длитель­ностью фронта. В основу генератора (рис. 11.15) положен мульти­вибратор который управляет работой токозадающих транзисторов VT3 и VT4. Когда транзистор VT2 открыт, через транзистор VT3 протекает зарядный ток конденсатора СЗ. Скорость нарастания на­пряжения на конденсаторе (или фронт выходного сигнала) зависит от зарядного тока, который регулируется резистором R12 Макси­мальное напряжение на конденсаторе ограничено стабилитроном VD2. При переключении транзисторов мультивибратора в другое состояние начинается процесс разряда конденсатора. Транзистор VT3 закрывается, а транзистор VT4 открывается. Разрядный ток транзистора VT4 регулируется с помощью резистора R15. Значение этого тока определяет спад выходного сигнала. Частота и скваж­ность выходного сигнала регулируются резисторами R2 и R4. Гене­ратор может работать в широком диапазоне частот, вплоть до 1 МГц. При больших изменениях частоты выходного сигнала необ­ходимо менять номиналы емкостей конденсаторов С1 и С2.

4. ГЕНЕРАТОРЫ НА ОУ

Управляемый генератор сигнала пилообразной формы. Ге­нератор (рис. 11.16) состоит из порогового устройства и интегра­тора. Выходное напряжение отрицательной полярности порогового устройства, построенного на ОУ DA1, подается на вход интегратора. Конденсатор С, включенный в цепь ООС, постепенно заряжается. На выходе ОУ DA2 формируется линейно нарастающий сигнал. Когда на неинвертирующем входе ОУ DA1 будет нулевой потенци­ал, произойдет ее переключение.


Выходной сигнал положительной полярности проходит через диод и разряжает конденсатор. Когда конденсатор полностью разрядится, ОУ DA1 вновь вернется в ис­ходное состояние и начнется новый цикл формирования выходного сигнала. Частота следования выходного сигнала определяется вы­ражением f = 3/C(R3 + R4).

Генератор на ОУ К153УД1. Генератор треугольных импульсов (рис. 11.17, а) построен на двух ОУ. Первый ОУ выполняет функции интегратора, а второй является пороговым элементом. Напряжение на выходе ОУ DA1 линейно возрастает (убывает). Когда оно срав­няется по абсолютному значению с выходным напряжением ОУ DA2, переключится второй ОУ и на делителе R5, R6 изменится полярность напряжения. В этом случае выходной сигнал ОУ DA1 будет линейно убывать (возрастать). В последующий момент про­изойдет сравнение выходного сигнала ОУ DA1 с порогом закрыва­ния ОУ DA2. Произойдет вторичное переключение ОУ DA2. Зави­симость периода сигнала треугольной формы от коэффициента передачи ОУ DA2 показана на рис. 11.17,6.

Генератор на однопереходном транзисторе с усилителем. Гене­ратор пилообразного сигнала (рис. 11.18, а) построен на ОУ, кото­рый выполняет функции интегратора. Скорость нарастания выход­ного сигнала зависит от входного напряжения. Когда напряжение на выходе ОУ достигнет 8 В, открывается однопереходный транзи­стор. Положительный импульс на резисторе R2 проходит через диод, и разряжается интегрирующий конденсатор. Зависимость ча­стоты выходного сигнала от на­пряжения на входе показана на рис. 11.18, б.



       Рис. 11.16                                                        Рис. 11.17

Генератор с двойной ПОС. Ге­нератор (рис. 11.19, а) состоит из интегратора, выполненного на ОУ DA2. Когда ОУ DA2 переключа­ется, на его неинвертирующий вход подается напряжение ПОС, которое определяет порог срабатывания схемы. С потенциометра R4 на неинвертирующий вход ОУ DA1 действует вторая ПОС. Если величина этой связи меньше порога открывания ОУ DA2, то передний фронт импульсного сигнала на выходе ОУ DA1 пройдет через конденсатор С1 на инвертирующий его вход.


С этого момента начинается про­ цесс заряда конденсатора С1. Напряжение на выходе ОУ DA1 мед­ленно увеличивается. Когда оно достигнет порога открывания ОУ DA2, происходит переключение ОУ DA2. Начинается процесс разряда конденсатора С1. Частота следования импульсов выходно­го сигнала определяется выражением f=K2/4RC(K1-K2);



                          Рис. 11.18



                          Рис. 11.19



                          Рис. 11.20

K1 = R2/(R2+R3); K2 = R'4/(R'4+R"4). В зависимости от уровня сиг­нала ПОС в ОУ DA1 можно регулировать ступеньку выходного сигнала. Максимальное значение, ДE определяется напряжением на делителе R2, R3. На рис. 11.19,6 приведены эпюры напряжения в гонках схемы.

Запускаемый генератор сигнала. Выходное напряжение (рис. 11.20, а), формируемое на конденсаторе СЗ, равно U3 = = (t/C3)I2. Конденсатор заряжается линейно возрастающим током I2 = U2/R5 транзистора VT2. Управление коллекторным током тран­зистора VT2 осуществляется напряжением на конденсаторе С2 (U2= (t/С2)I3). Это напряжение зависит от тока транзистора VT3 (l3=UБ/R4). В результате U3 = Uб t2/C2C3R4R5. Для указанных на схеме номиналов элементов частота выходного сигнала равна 5 кГц. Сброс конденсаторов С2 и СЗ осуществляется внешним сиг­налом через транзисторы VT4 и VT1. На рис. 11.20,6 приведены эпюры напряжения в разных точках схемы.

Формирователь сигнала вида sec x. Формирование функции secx осуществляется от входного гармонического сигнала. Схема (рис. 11.21, а) может работать от единиц герц до сотен килогерц. В первом транзисторе происходит ограничение входного сигнала с амплитудой 2,5 В. Второй транзистор увеличивает крутизну фронтов прямоугольного сигнала и меняет его фазу. Сигнал на коллекторе транзистора VT2 суммируется с входным сигналом на резисторе R6. Выходной сигнал выбирается в определенной точке потенциометра так, чтобы можно было установить определенное значение глубины впадины функции sec я. Следует заметить, что эта схема формирования может давать погрешность в некоторых точках до 10%.


При увеличении амплитуд меандрового и гармонического сиг­ налов погрешность уменьшается. Для увеличения точности форми­рования функции sec а; можно поставить на входе схему диодного ограничения (рис. 11.21,6). Роль этой схемы заключается в том, чтобы сгладить вершины гармонического сигнала. С пом-ощью до­полнительной схемы точность моделирования может быть повыше­на до 5%.



                                                          Рис. 11.21

5. ГЕНЕРАТОРЫ СЛОЖНЫХ СИГНАЛОВ

Диодный генератор сложных сигналов. Сигналы сложной формы образуются (рис. 11.22) в результате изменения коэффици­ента усиления дифференциального усилителя. При малых входных сигналах все диоды закрыты. Коэффициент усиления, определяемый резисторами R2, R3 и R11, R12, близок к единице. С увеличением уровня входного сигнала начинают проводить диоды в эмиттерных цепях транзисторов. Это приводит к увеличению коэффициента уси­ления. Выходной сигнал становится более крутым. Три уровня из­менения коэффициента усиления используются как для положитель­ной, так и для отрицательной полярностей входного сигнала. Каждая цепь, состоящая из диодов и потенциометра, определяет разный порог открывания. Точная форма выходного сигнала под­страивается соответствующим потенциометром.

Дискретный формирователь сигналов специальных форм. В ос­нове генератора (рис. 11.23) лежит многофазный мультивибратор, который запускается импульсом положительной полярности. В схе­ме поочередно будут открываться транзисторы VT3. В открытом состоянии находится лишь один транзистор. В проводящее состоя­ние перейдет транзистор VT2, который в эмиттер транзистора VT1 направит ток, определяемый рези­стором R5. Если сопротивления резисторов меняются по опреде­ленному закону, то амплитуда выходного сигнала меняется по этому же закону. С помощью ре­зисторов R5 можно получить лю­бой закон изменения выходного сигнала. Частота переключения каналов определяется постоянной времени R6C2.





                   Рис. 11.22                                            Рис. 11.23



                          Рис. 11.24

Генератор функций. На вход генератора (рис. 11.24) подается импульсный сигнал положительной полярности. Логическая схема 2И — НЕ интегральной микросхе­мы К133ЛАЗ закрывается. На вы­ходе 1 появляется сигнал отрица­тельной полярности с длитель­ностью, равной длительности вход­ного сигнала. Этот сигнал на RС-цепочке дифференцируется, и положительный импульс закрывает вторую логическую схему. На выходе этой схемы появляется импульс отрицательной полярности длительностью 5 мкс. Все последующие цепочки работают аналогичным образом. На выходах 1 — 7 последовательно друг за другом воз­никают импульсные сигналы. Все эти сигналы суммируются через определенные весовые резисторы на входе ОУ. В зависимости от по­следовательности принятых сопротивлений весовых резисторов на выходе ОУ можно сформировать сигнал любой сложности. Амплиту­да выходного сигнала определяется сопротивлением резистора R4. Для балансировки ОУ сопротивление резистора R3 подбирается под суммарное сопротивление весовых резисторов.



ИМПУЛЬСНЫЕ ГЕНЕРАТОРЫ


Широкое применение импульсных генераторов в дискрет­ной и аналоговой технике привело к разработке большого числа схем, выполняющих разнообразные-функции. В зависимости от на­значения устройства к генераторам предъявляются самые разнооб­разные требования. Наиболее важным является требование стабиль­ности частоты формируемого сигнала. Относительная нестабильность частоты в пределах 10-4 — 10-6 может быть получена только в-квар-цевых генераторах. Нестабильность частоты в пределах 10~2 — 10~3 достигается в генераторах на LC-контурах. Генераторы с неста­бильностью частоты 10-1 — 10-2 строятся на RС-элементах.

В устройствах, где требования по стабильности частоты не иг­рают первостепенной роли, применяют генераторы с параметриче­ской стабилизацией. Эти генераторы з-начительно проще в изготов­лении, чем кварцевые. Параметрическая стабилизация частоты в импульсных генераторах сводится к стабилизации момента переклю­чения пороговой схемы, на вход которой поступает сигнал с инте­грирующей цепочки Здесь можно идти двумя путями. При экспо­ненциальном законе изменения напряжения на интегрирующем кон­денсаторе необходимо уменьшить интервал открывания пороговой схемы и стабилизировать пороговый уровень. Для этих целей при­меняют ОУ с чувствительностью менее 1 мВ. Кроме этого способа стабилизации частоты генератора, можно применить способ, осно­ванный на другдм законе изменения напряжения на интегрирующей емкости. Например, применение параболического закона изменения напряжения увеличивает точность открывания пороговой схемы. К этому варианту следует отнести применение мостовых цепей, со­стоящих из двух интегрирующих элементов. Выходные сигналы мо­ста подаются на двухвходовое пороговое устройство. В первой интегрирующей цепочке выходной сигнал возрастает, а во второй — падает. В тот момент, когда сигналы на вйходах цепочек сравняют­ся, срабатывает поррговое устройство и происходит разряд конден­саторов.

Наряду со стабилизацией частоты выходного сигнала к генера­торам предъявляются требования минимального потребления энер­гии.
Среди импульсных схем с минимальной мощностью потребления особое место занимают схемы с дополнительной симметрией, постро­енные на комбинации транзисторов обоих типов проводимости. Основной особенностью этих схем является то, что в одном из со­стояний все транзисторы закрыты и потребление энергии практиче­ски отсутствует. Энергия расходуется в момент формирования импульсного сигнала.

При большом разнообразии генераторов существует значитель­ное количество методик расчета параметров схемы. Применяются разные подходы к температурной стабилизации частоты.

Способ включения ОУ, которые приведены в схемах, можно найти в гл. 1.

1. ГЕНЕРАТОРЫ НА ТРАНЗИСТОРАХ

Генератор с независимой регулировкой периода и длитель­ности импульса. Длительность импульсов и интервал между ними в генераторе (рис. 10.1) могут устанавливаться независимо друг от друга в широком диапазоне. Эти параметры генератора определя­ются разрядом двух конденсаторов, При разряде конденсатора С1 транзистор VT1 закрыт, a VT2 открыт. Когда же разряжается конденсатор С2, то транзистор VT1 открыт, a VT2 закрыт. При открытом транзисторе VT1 конденсатор С1 заряжается Поскольку транзистор VT1 насыщен, то конденсатор С1 заряжается большим базовым током.



                                          Рис. 10.1

Длительность импульса определяется постоянной времени Ti=RiCi, а интервал между импульсами — постоянной времени т2 = С2R4. Для номиналов элементов, указанных на схеме скваж­ность равна 500. При С1=100 мкФ, R1= 150 кОм и С2=б,47 мкФ длительность импульса равна 50 мс, а интервал — 10 с. Эпюры напряжений в точках схемы проиллюстрированы на рисунке.



                                                          Рис. 10.2

Генератор инфранизких частот. При включении питания (рис. 10.2) транзистор VT2 находится в открытом состояния. На его эмиттере существует напряжение, равное напряжению источника питания. Положительный перепад напряжения проходит через кон­денсатор С на затвор полевого транзистора VT3. Полевой транзл-стор закрыт.


Начинается процесс заряда конденсатора через рези­стор R3. Через некоторое время напряжение на конденсаторе станет таким, что полевой транзистор начнет открываться. Это вызовет открывание транзистора УТ1, который, в свою очередь, закроет транзистор VT2. Конденсатор С начнет разряжаться через резистор R4 и открытые n-р переходы транзистора VTJ и полевого тран­зистора.

Время заряда емкости определяется выражением t3=0,7 CRS, а время разряда tр=0,7 CRz. Эпюры напряжений в точках схемы показаны на рис. 10.2.

Для получения максимально возможного значения t, необходи­мо сопротивление резистора R3 выбирать большим. Поскольку ток затвора полевого транзистора меньше 10~8 А, то R3 может прини­мать значения десятков мегаом. Элементы с номиналами, указан­ными на схеме, позволяют получить период следования импульсов 1,4 с. Температурный дрейф составляет 0,6%/град.

Мостовой генератор. Генератор (рис. 10.3, с) имеет два выхода, где формируются сигналы различной полярности. В коллекторе транзистора VT1 формируется импульс отрицательной полярности, а в коллекторе транзистора VT2 — положительной. После вклю­чения питания оба транзистора находятся в закрытом со­стоянии. Начинается процесс заряда конденсаторов. Конденсатор С1 заряжается через резистор R1, а конденсатор С2 — через рези­стор R4. На базе транзистора VT1 увеличивается положительный потенциал. В то же время положительный потенциал базы транзи­стора VT2 уменьшается. Через время T1 = 0,7 C1R1 потенциалы на базах транзисторов сравняются. С этого момента оба транзистора начинают проводить. С открыванием транзистора VT1 конденсатор С2 начнет разряжаться через базовую цепь транзистора VT2 В это же время конденсатор С1 будет разряжаться через базовую цепь транзистора VT1. Оба транзистора окажутся в режиме насы­щения. Напряжение на коллекторе транзистора VT1 изменится с 15 до 7,5 В, а на коллекторе транзистора VT2 — от 0 до 7,5 В В этом состоянии транзисторы будут находиться до тех пор, пока базовые токи способны обеспечить коллекторный ток 5 мА.


По достижении этого граничного условия оба транзистора перейдут в активную область. Изменение напряжения в коллекторах транзисторов приве­дет к дальнейшему уменьшению коллекторного тока и в конечном счете к полному закрыванию. Начнется новый цикл работы генера­тора. Время разряда конденсаторов определяется длительностью импульса 2 мкс. Период следования импульсов равен 70 мкс На рис. 10.3,6 приведены эпюры напряжений в точках схемы.



       Рис. 10.3                                              Рис. 10.4



                                          Рис. 10.5

Последовательная схема генератора. При включении питания схемы (рис. 10.4) транзистор VT1 будет открыт напряжением дели­теля R1 и R2. Следом откроется транзистор VT2. Напряжение на его коллекторе равно напряжению питания. Начинается процесс за­ряда конденсатора. Основной цепью заряда будет резистор R4. Напряжение на конденсаторе увеличивается до 6 В. После этого следует закрывание транзистора VT1, а затем и транзистора VT2. Плюсовое напряжение на конденсаторе будет уменьшаться через резистор R6. Наступит момент, когда напряжение на конденсаторе сравняется с напряжением в базе транзистора VT1. С этого момен­та транзисторы VT1 и VT2 открываются. Начинается новый цикл работы генератора Длительность импульса определяется постоян­ной времени RiCi, а интервал между импульсами - постоянной вре­мени R8Ci. При указанных на схеме номиналах импульсы выход­ного сигнала имеют период следования 2 кГц.

Высокочастотный генератор. Преобразователь постоянного на­пряжения в частоту (рис. 10.5, а) построен на одном транзисторе, который работает в лавинном режиме. В этом режиме транзистор имеет S-образную вольт-амперную характеристику. Входное напря­жение может меняться до 10 В с девиацией частоты выходного сиг­нала 40 — 50% от максимальной частоты 35 МГц. Крутизна преоб­разования 10 МГц/В.

В исходном состоянии, когда управляющее напряжение равно нулю, конденсатор разряжается через резистор R4. Как только напряжение на конденсаторе спадет до уровня включения транзисто­ра, конденсатор через открытый транзистор быстро заряжается.


Затем процесс повторяется. Напряжение на конденсаторе имеет пи­лообразную форму. На выходе генератора формируются импульсы с амплитудой 5 В, длительностью десятки наносекунд и временем нарастания до 4 не. Пропорциональность изменения частоты выход­ного сигнала от управляющего напряжения достигается подбором сопротивления резистора R2. Для R2=Q,5 кОм нелинейность состав­ляет 0,8%, а для R2 = 2 кОм — 0,4%.

Применяемые в схеме транзисторы типа ГТ313А имеют малое напряжение пробоя эмиттерного перехода. Чтобы не произошло от­крывания эмиттерного перехода напряжением на конденсаторе, в цепь включен диод VD1. Для устранения пробоя эмиттерного пере­хода можно применить следящую ОС, осуществляемую при помощи транзистора VT2 (рис. 105,6). Кроме того, этот транзистор позво­ляет повысить нагрузочную способность схемы, если сигнал снимать с эмиттера, и обеспечивает более высокую стабильность частоты.



       Рис. 10.6                                  Рис. 10.7

Формирователь сигнала с большой скважностью. После вклю­чения питания (рис. 10.6) конденсатор заряжается через резисторы R1 и R3. Транзистор VT2 закрыт напряжением с делителя R2 и R5. В закрытом состоянии находится также транзистор VT1. По мере заряда конденсатора напряжение в эмиттере увеличивается. Через некоторое время напряжение на конденсаторе превысит напряже­ние на базе. Транзистор VT2 откроется. Коллекторный ток этого транзистора откроет транзистор VT1. Конденсатор начнет разря­жаться через транзистор VT2, резистор R4 и переход база — эмит­тер транзистора VT1. Напряжение на конденсаторе падает практи­чески до нуля. Наступает момент, когда транзистор4 VT2 выходит из насыщения. Начинает закрываться транзистор VT1. Коллектор­ное напряжение его через делитель напряжения R2 и R5 еще больше закрывает транзистор VT2. Возникает лавинообразный процесс, и оба транзистора закрываются. Конденсатор вновь начинает заря-жаться.

Для указанных в схеме номиналов элементов период следования выходных импульсов равен приблизительно 2 с, а длительность им­пульса 2 мкс.



Низкочастотный генератор. Генератор (рис. 10.7) позволяет по­лучить на выходе сигналы с частотой повторения от нескольких миллисекунд до нескольких секунд. Это достигается непосредствен­ной связью между транзисторами разной проводимости. При вклю­чении питания транзистор VT2 открывается и его коллекторный ток открывает транзистор VT1. В цепи коллектора транзистора VT1 устанавливается напряжение, равное напряжению питания. Поло­жительный перепад напряжения пройдет в базу транзистора VT1 и еще больше откроет его. Конденсатор С будет заряжаться через базовую цепь транзистора VT1. Время заряда конденсатора опре­деляет длительность выходного импульса ти = ЯбС. При R& равном нулю, следует учитывать входное сопротивление транзистора VT1, равное 100 — 200 Ом. После того как конденсатор зарядится, тран­зистор VT2 начинает выходить из насыщения. В этой связи умень­шится и ток коллектора транзистора VT1. Конденсатор начинает разряжаться. Цепь разряда состоит из резисторов R1 и R2. В базе транзистора VT2 формируется отрицательный импульс, который закроет его. Время разряда конденсатора определяет период следо­вания импульсов T = R1C. Для номиналов элементов, указанных на схеме, длительность импульса равна 5 мс, период следования им­пульсов 1 с.



                                          Рис. 10.8

Генератор сигнала с управляемым периодом. Генератор (рис. 108, а) собран на двух транзисторах разного типа проводи­мости. При включении питания оба транзистора находятся в закры­том состоянии. Конденсатор С1 заряжается через резисторы R2 и R3. Напряжение в эмиттере VT1 будет уменьшаться во времени. Как только оно сравняется с управляющим напряжением, транзистор VT1 откроется. В открытое состояние переходит и транзистор VT2 Про­исходит разряд конденсатора через оба транзистора. Открытое со­стояние транзисторов определяет длительность импульса, равную 1 мкс. После разряда конденсатора начинается новый цикл работы генератора. Зависимость периода следования импульсов от управ­ляющего напряжения пбказана на рис. 108,6



Мостовая управляемая схема генератора. Генератор (рис. 10 9, а) построен на составных транзисторах. Частота импульсов выходного сигнала меняется с помощью напряжения на базе транзистора VT1. С увеличением управляющего напряжения амплитуда импуль­сов уменьшается UВых=10 В — Uynp. Длительность импульса (2 мкс) остается без изменения. Период следования импульсов оп­ределяется цепочкой С2, R3 и напряжением в базе транзистора VT1. При включении питания конденсатор С2 заряжается через рези­стор R3. В первый момент напряжение на базе транзистора VT2 будет практически равно 10 В. По мере заряда конденсатора это напряжение уменьшается. Когда оно сравняется с напряжением на базе транзистора VT1, произойдет открывание обоих транзисторов.



                          Рис. 10.9



                          Рис. 10.10

Конденсатор начнет разряжаться через открытые транзисторы. Пос­ле разряда конденсатора наступит новый цикл работы. Генератор работает в широком диапазоне частот. С увеличением емкости кон­денсатора частота импульсов уменьшается, а длительность увели­чивается незначительно. Зависимость периода повторения от управ­ляющего напряжения показана на рис. 10.9,6.

Генератор с динамической ОС. Выходной сигнал генератора (рис. 10.10) формируется в тот момент, когда оба транзистора от­крываются. Положительный перепад напряжения в коллекторе тран­зистора VT2 передается на базу транзистора VTL Коллекторный Ток этого транзистора еще больше открывает транзистор VT2. В от­крытом состоянии транзисторы находятся до тех пор, пока конден­сатор разряжается через параллельно соединенные резисторы R4 и R5. При закрывании транзистора VT2 отрицательный перепад на­пряжения на коллекторе закрывает транзистор VTL Конденсатор заряжается через резистор R5. На выходе формируется сигнал, у которого длительность импульса в два раза короче интервала между импульсами. Длительность интервала определяется т«ЗС|R5.

Мостовая схема с пороговым транзистором. Генератор (рис. 10.11, а) собран на мостовом времязадающем элементе, со­стоящем из цепочек R2, С2 и JR3, С1. В диагональ моста включен транзистор VTL При включении питания в т. 3 будет положитель­ный перепад напряжения, который откроет транзистор VT2. По мере заряда конденсатора С1 напряжение в т. 3 уменьшается.


Постепен­но нарастает напряжение в т. L Когда напряжение в т. 1 будет больше напряжения в т. 3, транзистор VT2 включится в нормаль­ный режим Увеличение напряжения в т. 2 заставит транзистор VT2 открыться. До этого момента на эмиттере транзистора было большое положительное напряжение. С открыванием транзистора VT2 перей­дет в проводящее состояние и транзистор VTL Начинается новый цикл работы генератора. На рис. 10.11,6 приведены эпюры напря­жений в точках схемы и зависимость периода повторения от управ­ляющего напряжения.



                                          Рис. 10.11



                               Рис. 10.12

Генератор с ограниченной ОС. В генераторе (рис. 10 12, а) оба транзистора находятся в открытом состоянии. Конденсатор включен в цепь ПОС В результате изменения напряжения на коллекторе VT2 транзистор VT1 открывается. Затем следует открывание транзисто­ра VT2, который входит в насыщение. Конденсатор С1 заряжается через резистор R1. Через некоторое время базовый ток транзистора VT1 уменьшится настолько, что транзистор VT2 выйдет из насы­щения. Положительный перепад в коллекторе транзистора VT2 будет закрывать транзистор VT1. Это приведет к закрыванию обо­их транзисторов. ,Они будут закрыты до тех пор, пока конденсатор не разрядится через резисторы R1 — R3. Влияние сопротивления ре­зистора R3 на длительность импульсного сигнала показано на рис. 10.12,6. Если вместо резистора R1 включить диод, то генера­тор будет формировать импульсы длительностью 2 мкс и периодом следования 800 мкс.

Генератор с эмиттерной связью. В момент включения питания (рис. 10.13) транзистор VT2 открыт. В его эмиттере появляется на­пряжение, равное напряжению питания. Положительный перепад на­пряжения действует на эмиттер транзистора VT1. Это напряжение закрывает транзистор VT1. Конденсатор С заряжается через рези­стор R2. В тот момент, когда напряжение в эмиттере будет близко к нулю, транзистор VT1 открывается. Открывание транзистора VT1 изменит напряжение на эмиттере транзистора VT2, что вызовет реге­неративный процесс, приводящий к закрыванию транзистора VT2. С этого момента конденсатор С разряжается через резистор КЗ и открытый транзистор VT1. Потенциал эмиттера тра-нзистора VT1 за все время разряда конденсатора остается почти постоянным и близким к нулю.


Транзистор VT2 начнет открываться в тот момент, когда напряжение на конденсаторе будет близко к нулю. В пбсле-дующий момент ток через резистор R3 откроет транзистор VT2 и произойдет переключение транзисторов. Наступит новый цикл работы.



                               Рис. 10.13                                            Рис. 10.14

Длительность импульса выходного сигнала определяется выра­жением ти=0,7С7?з, а время восстановления равно тв=0,7СЯ2- Для тех4номиналов элементов, которые указаны на схеме, длительность импульса выходного сигнала равна 75 мкс, а период следования 850 мкс. При увеличении сопротивления резистора R2 до 160 кОм период повторения увеличивается до 7,6 мс.

Генератор с двойным мостом. Генератор (рис. 10.14, а) постро­ен на транзисторах разных типов проводимости. Когда один тран­зистор открывается, то перепад напряжения в его коллекторе от­крывает, другой транзистор. Транзисторы либо оба проводят, либо оба закрыты.

При возникновении колебаний конденсаторы заряжаются через открытые транзисторы, а разряжаются через резисторы R2 и R3. Согласование постоянных времени Cl, R2 и С2, R3 стабилизирует период следования импульсных сигналов, длительность которых может быть меньше 1 мкс. Частота следования импульсов опреде­ляется выражением f=1,2/R2C2=1,2/R3C2. На рис. 10.14,6 приве­дены эпюры напряжений в точках схемы и зависимости периода повторения от R3.

Управляемый генератор с зарядным конденсатором. При вклю­чении питания (рис. 10.15, а) управляющее напряжение открывает транзисторы VT1 и VT2. Вт.1 будет напряжение 10 В. До этого напряжения конденсатор С1 заряжается через транзистор VTL По мере заряда конденсатора уменьшается коллекторный ток транзи­стора VT1, который поддерживает напряжение 10 В в т. 1. Насту­пит момент, когда напряжение в этой точке уменьшится, что послу­жит причиной закрывания обоих транзисторов. Начнется процесс разряда конденсатора через резисторы R2, R3 и диод VD1. Когда напряжение на коллекторе будет равно управляющему, транзисторы VT1 и VT2 вновь откроются.


Время заряда» конденсатора опреде­ ляет длительность импульса 10 мкс. На рис. 10.15,6 приведены эпю­ры напряжений в схеме и зависимости длительности периода следования импульсов Т от управляющего напряжения и сопротив­ления резистора R2.



                                          Рис. 10.15

Мостовая схема генератора с усилителем. В генераторе (рис. 10.16, а) времязадающая цепочка состоит из элементов Cl, R2, а пороговым элементом является транзистор VT1, сигнал которого управляет транзистором VT2, осуществляющим сброс заряда инте­грирующего конденсатора. При включении питания в эмиттере тран­зистора VT1 возникает положительное напряжение, которое по мере заряда конденсатора уменьшается. Как только оно сравняется с управляющим напряжением, открывается транзистор VT1. Происхо­дит процесс разряда конденсатора через транзисторы VT1 и VT2. Частота следования импульсов пропорциональна управляющему на­пряжению. На рис. 10.16,6 показана зависимость частоты повторе­ния и периода от управляющего напряжения.

Генератор с двойной ОС. Генератор (рис. 10.17) позволяет по­лучить импульсный сигнал большой скважности. Для тех номиналов элементов, которые указаны на схеме, длительность импульса равна 50 мкс, а скважность можно менять от 2 до 2500. Такая большая регулировка скважности возможна благодаря подключению базовых резисторов R1 и R6 к коллектору транзистора VT3.



                               Рис. 10.16                                                        Рис. 10.17

В момент включения схемы тран­зисторы VT1 и VT2 закрыты. Кон­денсатор С1 начинает заряжаться. Напряжение на базе транзистора VT1 увеличивается. Этот транзистор открывается. Своим коллекторным током он открывает транзистор VT2. Положительный перепад напряжения в коллекторе транзистора VT2 еще больше открывает транзистор VTI. Развивается лавинооб­разный процесс. В результате в открытом состоянии находятся все транзисторы. Коллекторное напряжение 9 В транзистора VT3 за­крывает диод и отключает базовые резисторы Rl, R6. Спустя не­которое время конденсатор полностью зарядится и транзистор VT1 закроется.


Следом за ним закроются VT2 и VT3. Начнется процесс разряда конденсатора через резисторы R1. и R6. Период следования импульсов определяется постоянной времени т= = Ci[Ri-r-Re]- В коллекторе транзистора VT3 формируются им­пульсы отрицательной полярности, а в коллекторе VT2 — положи­тельной.

Генератор на составном транзисторе. Генератор (рис. 10.18, о) построен на интегрирующей цепочке Rl, C1 и двух транзисторах. Напряжение на конденсаторе нарастает по экспоненциальному за­кону. Когда напряжение на конденсаторе достигает значения уп­равляющего, открывается составной каскад, выполняющий функции тиристора. Конденсатор разряжается через открытые транзисторы и резисторы R2 и R4. Время его разряда определяет длительности импульса, равную 15 икс. После окончания разряда конденсатора транзисторы закрываются. Начинается новый цикл работы генера­тора. Зависимость периода следования импульсов от управляющего напряжения показана на рис. 10.18, 6.

Генератор с интегратором тока. В основу генератора (рис. 10.19, а) положен принцип заряда конденсатора С постоянным током, протекающим через транзистор VT1, Конденсатор заряжает­ся по линейному закону. Когда напряжение на нем станет равным управляющему, открываются транзисторы VT2 и VT3. Происходит процесс разряда конденсатора за время действия импульса 15 мкс.

Амплитуда импульса равна амплитуде управляющего напряжения Период следования импульсов меняется по линейному закону в за­висимости от управляющего напряжения (рис 10 19,6)



                                                          Рис. 10.18



                                           Рис. 10.19

Генератор с выключающим транзистором. В первоначальном состоянии все транзисторы (рис. 10.20) закрыты. Конденсатор С1 заряжается через резистор R2. Когда напряжение на конденсаторе становится равным напряжению, получаемому с делителя R5 R6 (приблизительно 7 В), транзисторы VT1 и VT2 открываются Раз­ряд конденсатора происходит через транзисторы VT1 и VT2 и базо­вую цепь VT3. Транзистор VT3 открывается.


Время разряда кон­денсатора равно Tp = C1R4. Затем транзисторы VT1 и V77 закрыва­ются и начинается новый цикл заряда конденсатора, который длится

т3=0,3C1R2.

Генератор с квадратичным законом изменения напряжения на конденсаторе. В генераторе (рис. 10.21, а) времязадающим устрой­ством являются транзисторы VT1 и VT2 и конденсатор С1 Тран­зистор VT1 работает в качестве генератора тока. Зарядный ток определяется напряжением на базе этого транзистора Это напря­жение меняется в зависимости от потенциала на конденсаторе За счет этого в т. 2 напряжение изменяется по параболическому зако­ну. Быстрый рост напряжения на конденсаторе уменьшает время открывания составного каскада VT3. VT4 .для разряда конденсатоpa. Это свойство увеличивает стабильность периода следования импульсов. На рис 1021,6 представлена зависимость периода Т от управляющего напряжения



                                          Рис. 10.20



                                          Рис. 10.21



ЭКВИВАЛЕНТЫ РАДИОЭЛЕМЕНТОВ


Возможность изменения характеристик радиоэлементов с помощью электронных схем дает возможность расширить диапазон применения этих элементов. Например, включение конденсатора по­стоянной емкости в цепь ООС усилителя позволяет получить экви­валентную емкость конденсатора, в коэффициент усиления раз превы­шающую емкость конденсатора. При регулируемом коэффициенте усиления можно создать эквивалент конденсатора переменной емко­сти с такой максимальной емкостью, которую практически невозмож­но получить у конденсатора. С ломощью транзисторных схем можно изменять не только емкость конденсаторов, но и сопротивление рези­сторов. Этому вопросу уделяется большое внимание в микроэлектро­нике, поскольку технологические ограничения препятствуют изготов­лению элементов с большими номиналами. Для получения эквива­лентных конденсаторов и резисторов применяют транзисторные схе­мы. Индуктивные же элементы моделируются схемами на ОУ. Одна из таких схем — гиратор превращает емкость конденсатора в индук­тивность. Вопросу преобразования реактивных элементов в периоди­ке уделяется большое внимание. Одним из вопросов, решаемых элек­тронными схемами, является создание потенциометров, управляемых дистанционно с помощью постоянного напряжения. В качестве управ­ляющих элементов в таких схемах применяют биполярные и полевые транзисторы.

 

1. РЕЗИСТОРНЫЕ МОСТЫ

Декада магазина сопротивлений на четырех резисторах. Де­када состоит из четырех резисторов трех номиналов. На основе дека­ды можно создать магазин сопротивлений со ступенью в 1 Ом. Число ступеней 10. Для получения ступени магазина в 10 Ом необходимо применить резисторы сопротивлением 10, 20, 40 Ом (рис. 2.1).

Декадный магазин сопротивлений. Схема магазина сопротивле­ний имеет шесть резисторов по 2 Ом (рис. 2.2). Декада имеет десять ступеней по 1 Ом. Для получения декады со ступенью в 10 Ом необ­ходимо применить резисторы по 20 Ом. Получение ступени в 100 Ом требует резисторов сопротивлением 200 Ом.


Резисторные мосты. Мостовая схема имеет вход, не связанный с общей шиной, и аналогичный выход. Для включения ее в общую электронную схему необходим незаземленный источник питания по­стоянного или переменного тока. На рис. 2.3, а приведена простая мостовая схема. Выходное напряжение моста при малых изменениях сопротивлений плеч определяется формулой



          


                   Рис. 2.1                                                            Рис. 2.2

Ток в диагонали моста равен Iо=(Uвх/4R)Дr, где сопротивление диа­гонали моста



На рис. 2.3,6 приведена схема двойного моста, для которого



при (R5 — R8)>(R1 — R4).

Схема моста с ОУ приведена на рис. 2.3, в. При R1=R3, R2=R4 K=ДR4/(R3 + R4). .

На рис. 2.3,г показано включение моста ка входе ОУ. Выходное напряжение определяется Uвыx = (R5/R) t0 при R5>R и R5=Rв. Для разных плеч моста усилитель имеет разное входное сопротивление. В этой схеме необходимо иметь попарную регулировку резисторов.

На рис. 2.3, д показана схема, где регулировка резисторов отсут­ствует. Однако этот мост должен иметь незаземленный входной ис­точник. Выходное напряжение Uвых= (1+R5/R4)Uм, где Uм — напря­жение моста. Он может регулироваться в широких пределах. Значи­тельно большие возможности у схемы рис. 2.3, е. Эта схема имеет большое входное сопротивление. Коэффициент передачи определяет­ся выражением K=l + (R5+R1)/R6. Его можно регулировать в ши­роких пределах. При R8=R11 и R9=К10 ОУ DAB имеет коэффициент усиления, разный единице. Этот усилитель объединяет выходы пре­дыдущих усилителей.

Резнсторный мост в цепи ОС усилителя. Уравновешенный мост, изображенный на рис. 2.4, а, имеет большую нелинейность при значительном отклонении сопротивления одного из резисторов от сопро­тивления другого. Так,



или U12 = 0,25Ea[l — a/2 + a2/4 — ...], где а=ДR/R. Зави­симость проиллюстрирована кривой 1 на графике рис. 2 4, в.



                          Рис. 23



                               Рис. 2.4



При включении моста в цепь ООС (рис. 2.4, б) изменение выход­ ного сигнала от изменения сопротивления резистора определяется линейной зависимостью UВых= — (ДR/2R)E. Эта зависимость показа­на прямой 2 на рис. 2.4, в.

Линейный мост с ОУ. Схема моста показана на рис. 2 5. Для по­лучений линейной зависимости выходного сигнала от изменения со­противления резистора моста, который собран на R1 — R4, применя­ется ООС. Эта связь осуществля­ется первым усилителем, выход­ной сигнал которого меняет ток, протекающий по цепи Rl, R2. Уравнение для первого ОУ:

Uвыхl/E = R2/R1-(R2+R1) R4/(R3 + R4)R1 при R3=R4UBblX/E=[R2/Rl-l]/2.



Рис. 2.5

Отсюда следует, что UВых прямо пропорционально измене­нию R2.

Для второго ОУ (DA2) необходимо иметь на выходе нуль при коэффициенте усиления K=R6/R5. Для этого следует выполнить ус­ловие E/Uвыx = R6/R5. Тогда 2/K=(R2/R1) — 1 или R1=R2K/(К+2).

Погрешности измерительного моста. Для питания моста исполь­зуется выходное напряжение интегральной микросхемы. Измеритель­ным элементом является резистор R5. При изменении сопротивления резистора R5 происходит рассогласование моста. Напряжение рас­согласования усиливается интегральной микросхемой и вновь подает­ся на мост. Эта цепь является цепью ООС. Чувствительность схемы зависит от коэффициента усиления усилителя и его входных токов. С учетом коэффициента усиления усилителя баланс места возможен при сопротивлении резистора R5, определяемом следующим выраже­нием:



где R'5=R1(R6 + R4a)/[R2+R4(l — a)]; a — коэффициент подстройки резистора R4, изменяемый от 0 до 1.

Для ОУ К153УД1 с K=2*104 отклонение R5 от R'6 будет состав­лять 0,02 %. Влияние разности входного тока усилителя можно оце­нить выражением



поскольку выполняется условие равенства сопротивлений на входах ОУ, то



В связи с тем, что на входах схемы стоят резисторы с сопротив­лением меньше 1 кОм, то при разностном токе 0,3 мкА погрешность будет менее 0,1 %. Для стабилизации работы ОУ к нему необходимо подключить следующие элементы: между выводами 5 и 6 С= = 220 пФ, между 1 и 8 — последовательную цепочку К — 1,5 кОм, С = = 100 пФ.


Описанная схема представлена на рис. 2.6.

                  


                   Рис. 2.6                                                            Рис. 2.7

Неуравновешенный мост. В уравновешенных мостах выходное напряжение при изменении сопротивлений плеч является нелинейной зависимостью. Для уравновешивания моста необходимо поддержи­вать постоянным ток через резисторы R3 — R5. Тогда Uаб = ДRR2/(R1+R2)=KДR. Стабилизация тока осуществляется посред­ством сигналов рассогласования ОУ. К выходу усилителя подключен эмиттерный повторитель, который обеспечивает необходимый ток моста (рис. 2.7).

2. ПОТЕНЦИОМЕТРЫ

Каскадное включение потенциометров. При каскадном включении нескольких потенциометров приходится уделять внимание влиянию одного потенциометра на другой. Транзисторная схема включения потенциометров позволяет избавиться от этого влияния. С помощью цепочки VDJ, КЗ в базе транзистора (рис. 2.8) устанав­ливается определенный потенциал, который влияет на протекающий через транзистор ток. Точное значение коллекторного тока устанав? ливается потенциометром R1. Максимальное значение этого тока определяется резистором R2. Для указанных на схеме номиналов ре-зисторрв максимальный ток равен 10 мА, а минимальный ток — 1 мА. При максимальном токе напряжение в коллекторе равно 10 В, а при минимальном токе — 1 В. В результате на потенциометре R5 напряжение меняется от 0,1 до 1 В. Выходное напряжение схемы стабилизировано и не зависит от номинала входного источника пита­ния, если оно превышает 15 В.



                   Рис. 2.8                                    Рис. 2.9

Потенциометр с квадратичной характеристикой. Выходное на­пряжение, которое снимается с потенциометра, изменяется по квад­ратичному закону в зависимости от угла поворота подвижного кон­такта. Напряжение меняется от 0,16 до 8,5 В. Точность установки выходного напряжения выше 1 % (рис! 2.9).

Сопротивление полевого транзистора. Сопротивление полевого транзистора меняется в зависимости от напряжения на затворе.


Вид функции fc = f(Ucn) показан на рис. 2.10, а. Эта зависимость нелинейна. Включение двух резисторов в цепь ОС выравнивает ха­рактеристики полевого транзистора (ряс. 2.10,6). Сопротивления ис­пользуемых резисторов зависят от типа полевого транзистора.

Мостовой управляемый резистор. При включении полевого транзистора в мостовую схему реализуется линейное изменение про-вюдимости цепи от управляющего напряжения. Динамический диа­пазон изменения проводимости равен 20 при максимальном уровне нелинейных искажений менее 1 % (рис. 2.11).

Управляемый резистор. Для получения линейного участка изме­нения сопротивления полевого транзистора применяют ОС В схеме на рис. 2.12, а цепь ОС выполнена на резисторах R1 и R2.-C помо­щью этой связи реализуется линейная зависимость тока, протекаю­щего через транзистор, от напряжения на стоке. Графики представ­лены на рис. 2.12,6. Проводимость полевого транзистора меняется в зависимости от управляющего напряжения на затворе в соответст­вии с графиком на рис. 2.12, г. Для уменьшения тока, протекающего по цепи управления, в схеме на рис. 2.12, в применен ОУ: С помощью ОУ можно значительно уменьшить управляющие напряжения при том же диапазоне изменения проводимости полевого транзистора.



                                           Рис. 2 10



                                           Рис. 2.11



                                           Рис. 2.12



                                           Рис. 2.13

Управляемый делитель. В качестве переменного сопротивления в делителях напряжения можно применить полевой транзистор (рис. 2.13,а). Минимальное сопротивление транзистора определяется его крутизной Ro = lfS. Характер изменения сопротивления полевого транзистора изображен на рис. 2.13,6. На рис. 2.13, в показаны ха­рактеристики изменения сопротивления для различных транзисторов серии КП103 в зависимости от напряжения между затвором и исто­ком.

Если на управляющий вход подать переменный сигнал, а на вход — постоянный, то выходной переменный сигнал пропорционален постоянному сигналу.



 

3. АТТЕНЮАТОРЫ

Высокочастотный аттенюатор. Волновое сопротивление ат­ тенюатора 75 Ом. Он- построен на резисторной матрице (рис. 2.14), которая имеет постоянное выходное сопротивление независимо от положения переключателя. Аттенюатор рассчитан на максимальное ослабление сигнала 50 дБ. Максимальное затухание можно увели­чить, подключая аналогичные звенья.



                               Рис. 2.14



                               Рис. 2.15

 

Комбинированный аттенюатор. Коэффициенты передачи аттенюа­торов определяются выражениями: для схемы (рис. 2.15, а) Uвыx/Uвx=RZ/(R1+RZ) (передаточные характеристики показаны на рис. 2.15, в — кривые 1, 2, 3); для схемы (рис. 2.15,б) UВьиД/вх=R1/(R1 +R2), где



(передаточные характеристики показаны на рис. 2.15, в — кривые 4, 5,6).

В зависимости от сопротивлений резисторов для коэффициента передачи можно получить любой закон изменения. Для случая, ког­да R2=R4 = 5 кОм и R1=Rз=10 кОм на графике рис. 2.15, в приведе­ны сплошные кривые, а для R2=Rч=0, R| = 1 кОм, Я3=40 кОм — пунктирная кривая.

Управляемый аттенюатор. Схема аттенюатора (рис. 2.16) по­строена на резисторном делителе напряжения, выходы которого под­ключены к аналоговому переключателю на МОП-транзисторах. Уп­равление интегральной микросхемой осуществляется сигналами на-пряжением минус 15 В. Амплитуда входного сигнала до 10 В. Атте­нюатор дискретно, с шагом 20 дБ, ослабляет сигнал на выходе. На рис. 2.16,6 приведены кривые -изменения фазового угла выходно го сигнала от частоты. Эти изменения связаны с влиянием проходных емкостей полевых транзисторов интегральной микросхемы. Макси­мальный вклад в изменение фазы выходного сигнала оказывают пер­вые два ключа. Кривая 1 характеризует выходной сигнал при ослаб­лении 20 дБ, кривая 2 — при ослаблении 40 дБ, кривая 5 — 60 дБ, кривая 4 — 80 дБ. Если делитель построить на резисторах с сопро­тивлениями R1 — R4=l,2 кОм; R5 — R8=10 кОм, то фазовый сдвиг будет значительно уменьшен.


Кривая 5 характеризует выходной сиг­ нал при ослаблении 60 дБ для второго варианта аттенюатора.



                               Рис. 2.16



                               Рис. 2.17

Управляемое линейное сопротивление. Сопротивление полевого транзистора линейно зависит от управляющего напряжения. Как видно из характеристики, существуют два линейных участка: при Uупр>1 В и UуПр<0,4 В. В первом случае сопротивление меняется от 18 до 37 кОм, а во втором — от 1 до 300 Ом. .Линейность изме­нения сопротивления обеспечивается идентичностью характеристик полевых транзисторов, которые находятся в интегральной микросхе­ме К504НТ4Б. Управление вторым полевым транзистором осущест­вляется посредством изменения режима работы первого транзистора, который включен в цепь ООС (рис. 2.17). ,

Управляемое сопротивление для переменного тока. Схема (рис. 2.18) позволяет получить изменение проводимости транзисто­ров на 100 дБ, при этом ток в управляющей цепи меняется от 0 до 1 мА. Управляющее напряжение включается таким образом, чтобы открыть транзисторы. Сопротивление n-р перехода при малых сме­щениях меняется в широких пределах. Входной сигнал проходит через четыре n-р перехода.



                               Рис. 2.18

Для германиевых транзисторов управляющий ток должен лежать в диапазоне от 10 мкА до 10 мА. Сопротивление меняется по форму­ле R=1,1/h21Э I, где h21Э — коэффициент передачи транзистора. У кремниевых транзисторов управляющий ток равен от 1 мкА до 1 мА, а сопротивление меняется по формуле R — 2,5/h21ЭI. Входное сопротивление при Iу=0 для германиевых транзисторов составляет 4,7 кОм, для кремниевых транзисторов — 2,3 кОм. При входном сиг­нале 50 мВ нелинейные искажения составляют менее 3,5 %. В схеме транзисторы VT1 и VT2 можно заменить интегральной микросхемой К10КТ1, а транзисторы VT3 и VT4 — интегральной микросхемой К124КТ1 (К162КТ1).

 

4. ЭКВИВАЛЕНТЫ КОНДЕНСАТОРОВ

Уменьшение емкости постоянного конденсатора.


Включение конденсатора в цепь ОС активного элемента позволяет управлять эквивалентной емкостью с помощью резистора. Эквивалентная ем­кость конденсатора в схеме на рис. 2.19 зависит от потенциала, до которого он может зарядится при действии входного сигнала. При изменении напряжения, поступающего на вторую обкладку конденса­тора, появляется возможность менять эквивалентную емкость. Если на базы транзисторов VT2 и VT4 с резистора R подается половина напряжения, то эквивалентная емкость будет в два раза меньше ем­кости конденсатора. Подобным способом можно изменять емкость в 1000 раз. Для уменьшения габаритов устройства транзисторы VT1 и VT2 можно заменить интегральной микросхемой К101КТ1, а тран­зисторы VT3 и VT4 — К124КТ1 (К162КТ1).

Увеличение емкости постоянного конденсатора. Подключением конденсатора в цепь ООС усилителя можно изменить эквивалентную емкость конденсатора Сэкв=С (1 — K). Усилитель должен менять ко­эффициент усиления с переворотом фазы сигнала. Коэффициент уси­ления можно регулировать с помощью резистора R2 (рис. 2.20). Большое входное сопротивление усилителя сводит к минимуму токи утечки электронного конденсатора.

Переменный конденсатор на ОУ. Конденсатор постоянной емко­сти (на схеме рис. 2.21, о) превращается в переменный за счет изме­нения коэффициента усиления ОУ. Эквивалентная емкость его равна CЭКB=C(l + R2/R1), где R1 и R2 — части потенциометра R. Таким об­разом, эквивалентная емкость зависит от угла поворота движка по тенциометра. Грубое и плавное изменение коэффициента передачи, а следовательно и эквивалентной емкости возможно во второй схеме на рис. 2.21,6. Здесь CЭKВ = C[1+R2/R1+ R3/R4+R2R3/R1R4].





Рис. 2.19

Рис. 2.20                                                                             Рис. 2.21

 

5. ЭКВИВАЛЕНТЫ ДИОДОВ И ТРАНЗИСТОРОВ

 

Идеальный диод. Полупроводниковые диоды не пригодны для выпрямления малых сигналов. Это обусловлено тем, что для появления проводимости кремниевым диодам требуется напряжение прямого смещения около 0,7 В, а германиевым — около 0,3 В.


Если диод включить на выходе ОУ, то пороговые напряжения диодов будут уменьшены в Kу.и раз, где Kу-u — коэффициент усиления ин­тегральной микросхемы. В результате этого диод начинает прово­дить при входных сигналах в несколько милливольт.

Первая схема на рис. 2.22 имеет коэффициент усиления, равный единице. Во второй схеме коэффициент усиления можно менять при изменении сопротивлений резисторов Kу.и = 1 + R2/R1.

Управляемый идеальный диод. Для настройки схемы на вход ОУ следует подать напряжение смещения ±304-50 мВ. Это смещение необходимо для выравнивания разбросов падения напряжения на диодах. В сбалансированной схеме при отрицательной полярности входного напряжения на выходе остается нуль. При входном напря­жении 10 В на выходе будет приблизительно 1 мВ. Для положитель­ного входного напряжения схема работает как диод в прямом на­правлении. Коэффициент усиления схемы равен Rd(Ri+R2). Выход­ной ток схемы определяется сопротивлением резистора R1. Для уве­личения выходного тока необходимо поставить два транзистора. Транзистор VT1 (рис. 2.23) разгружает интегральную микросхему от большого тока при отрицательной полярности входного сигнала. Положительная полярность входного сигнала проходит через тран­зистор VT2. Он же определяет выходной ток. В транзисторной схеме коэффициент усиления равен 0,99. Для уменьшения шумового сигна­ла на выходе параллельно диоду VD1 следует включить конденса­тор, уменьшающий граничную частоту работы схемы. Без конденса­тора граничная частота равна 200 кГц.



                                                          Рис. 2.22



                                                          Рис. 2.23



                                                          Рис. 2.24

Стабилизация характеристик транзисторов. Применение ООС для транзисторов, у которых выходные характеристики сильно изме­няют свою форму с увеличением базового тока, позволяет значитель­но улучшить эти характеристики. Схема устройства приведена на рис. 2.24, а.


На рис. 2.24, 5 приведены характеристики транзистора без ОС, а на рис. 2.24, в — с учетом элементов ОС. В результате этого коэффициент передачи транзистора изменился с 60 на 10 при коллекторном напряжении 20 В. На рис. 2.24, г приведены характе­ристики с уменьшенным эмиттерным сопротивлением. Коэффициент передачи транзистора в этом случае равен 20.

 

6. ПАРАМЕТРЫ КОНТУРА

Эмнттерный умножитель добротности. Увеличение доброт­ности контура на низких частотах при малых значениях индуктив­ности осуществляется, за счет ПОС через резистор R2 в схеме рис. 2.25. Для Д2=оо, когда нет ОС, добротность контура на частоте 15 кГц равна 0,5. При сопротивлении R2 — =50 Ом добротность становится 15, а для R2==20 Ом добротность увеличи­вается до 30. Добротность контура мож­но регулировать, если в цепь эмиттера транзистора поставить потенциометр. Резонансная частота контура не ме­няется.

Активная индуктивность. Известно, что ток и напряжение на индуктивности связаны выражением



Следовательно, схемное интегрирование входного сигнала реализует выходной ток интегратора пропорцио­нальным индуктивности. В схеме на рис. 2.26 напряжение на выходе интегральной микросхемы DA1 определяется выражением



Рис. 2.25



где ki и K2 — коэффициенты усиления интегральных микросхем и R1+R2=R. Ток





                                           Рис. 2.26

Поскольку К1 и K2->oo, то



Следовательно, экви-

валентные параметры будут равны



Если сопротивление rl имеет отрицательное значение, то при вклю­чении индуктивности в схему следует учитывать возможность са­мовозбуждения.

 

7. ПРЕОБРАЗОВАТЕЛИ СОПРОТИВЛЕНИЙ

Преобразователь «сопротивление — напряжение». Преобра­зователь (рис. 2.27) построен на основе стабилизатора тока, выпол­ненного на ОУ и транзисторе. В коллекторе транзистора поддержи­вается постоянный ток, который определяется отношением Iк=E2/R2. Этот ток создает радение напряжения на измеряемом резисторе Rx. Выходное напряжение прямо пропорционально измеряемому сопро­тивлению в диапазоне от 0 до 1 кОм.


Для получения погрешности преобразования во всем диапазоне сопротивлений не более 0,05 % желательно последовательно с Rx в коллектор транзистора включить добавочное сопротивление 100 Ом. Чувствительность схемы состав­ляет 4 мВ/Ом. В диапазоне температур от 0 до +50 °С погрешность измерений равна 0,003 % на градус.

                                         


                   Рис. 2.27                                                          Рис. 2.28



                                                          Рис. 2.29

Схема преобразования сопротивления. В схеме на рис. 2.28 за счет ПОС в ОУ осуществляется преобразование сопротивления. Ко­эффициент передачи по току определяется выражением

Iвх/Iн = R3/R2 — Rн/R1 или Rвх = Uвх/Iвх=Uвх/Iн(1 — a). при R3=R2, Rн/R1=a.

Для а=1 эквивалентное сопротивление равно бесконечности. Когда же а больше единицы, входное сопротивление становится от­рицательным.

Транзисторный делитель сопротивлений. Делитель сопротивле­ний, выполненный по схеме рис. 2.29, позволяет уменьшить сопро­тивление входного резистора в коэффициент передачи раз.

Начиная с входного тока 8 мкА, выходной ток практически пропорционален входному. Коэффициент передачи равен 500. Если на вход подан сигнал с амплитудой. UВх, то на выходе будет ток (Uвx/r)500. Следовательно, сопротивление цепи г уменьшается в 500 раз.

Делитель тока. Устройство (рис. 2.30) состоит из четырех диф­ференциальных пар транзисторов. Максимальный ток 8 мА протека­ет через VT9. Этот ток задается напряжением на базе и сопротивле­нием резистора R6. В эмиттерах транзисторов VT7 и VT8 общий ток разветвляется. Половина тока транзистора VT9 протекает через транзистор VT8, другая половина — через транзистор VT7 к следую­щей паре транзисторов, где ток также делится поровну. Коллекторный ток транзистора VT6 равен 2 мА. Последующие пары транзисто­ров осуществляют аналогичные операции. В результате на выходах схемы происходит пропорциональное деление токов.


Поскольку па­раметры транзисторов могут отличаться, в базах включены потен­циометры, которые балансируют пары транзисторов. Вместо транзи­сторов в схеме можно применить интегральную микросхему К198НТ5, что значительно уменьшит габаритное размеры устройства.



                                          Рис. 2.30

8. ПРЕОБРАЗОВАТЕЛИ ТОКА

Ограничитель тока. Ограничение коллекторного тока тран­зистора VT2 (рис. 2.31) осуществляется в результате открывания транзистора VT1. При малых входных напряжениях, когда открыт только транзистор VT2, наблюдается быстрое увеличение выходного тока. Эмиттерный ток транзистора VT2 создает падение напряжения на резисторе R2. Это напряжение открывает транзистор VT1. Кол­лекторный ток транзистора VT1 уменьшает базовый ток транзистора VT2. Дальнейшее увеличение, входного напряжения лишь увеличива­ет коллекторный ток транзистора VT1.

Пороговый ограничитель тока. Ограничитель выходного тока построен по принципу шунтирования базовой цепи выходного тран­зистора (схема рис. 2.32). При входных напряжениях, когда ста­билитрон VD1 закрыт, транзистор VT1 закрыт тоже. Все входное напряжение приложено к базе транзистора VT2. Выходной ток определается резистором КЗ. С уменьшением сопротивления резистора R3 наклон характеристики увеличивается. Как только входное на­пряжение превысит порогрвое напряжение стабилитрона, открывает­ся транзистор VT1. Напряжение в базе транзистора VT2 начнет уменьшаться. Выходной ток также уменьшится. Крутизну уменьше­ния выходного тока можно регулировать сопротивлением резистора R2. С увеличением сопротивления резистора R2 крутизна увеличи­вается. Уменьшить крутизну можно также включением в эмиттер транзистора VT1 дополнительного резистора.



                                          Рис. 2.31

Транзисторный трансформатор постоянного тока. Трансформатор (рис. 2.33) питается от двух источников напряжения. Первый источ­ник включен в базовую цепь транзисторов, а второй — в коллекторную цепь.


Эти источники не связаны между собой. От первого источ­ника ток протекает в базах и в резисторе R1. Пороговое напряже­ние открывания транзисторов равно 0,6 В. Ток второго источника, протекающий через коллекторы транзисторов, определяется сопро­тивлением в цепи эмиттеров. Проходные характеристики схемы по­казаны на рис. 2.33, б. По ним можно определить коэффициент транс­формации. Если h21Э R2=10 R1, где h21Э — минимальный коэффи­циент передачи по точу одного из транзисторов, то коэффициент трансформации определяется как отношение R1/R2.

Преобразователь сопротивлений. Устройство преобразует поло­жительное активное сопротивление в отрицательное. Это преобразо­вание осуществляется за счет изменения направления тока на выходе схемы (рис. 2.34) по отношению ко входу. Входное, напряжение по­ложительной полярности создает ток в эмиттерной цепи транзистора VT1. Порог открывания транзистора равен 100 мВ. Коллекторный ток этого транзистора равен Iк=0,98Iэ. Ток транзистора VT2 будет определяться напряжением в базе и сопротивлением в эмитте­ре: Iвых=(0,98R2IЭ — UБЭ)/R3, где V бэ =0,6 В — порог открыва­ния транзистора VT2. Если Iвх — Uвх/R1, то Iвых = — KIвх, где К — коэффициент преобразования — определяется из характеристик.

Отсюда Iвых = — KUвх/R1, или — R1/K= UВХ/IВЫХ.

Инвертор тока. В схеме на рис, 2.35 выходной ток прямо пропор­ционален входному. Это достигнуто за счет применения падения на­пряжения от входного тока на транзисторе VT1 в диодном включении: Коэффициент пропорциональности между токами зависит от отношения коэффициентов передачи транзисторов





                                          Рис. 2.32



                               Рис. 2.33



                               Рис. 2.34



       Рис. 2.35                      Рис. 2.36

Генератор стабильных токов. Коэффициент стабилизации выход­ных токов схемы на рис. 2.36 прямо пропорционально зависит от коэффициента усиления ОУ без ОС. С помощью ОУ стабилизируется напряжения в эмиттере транзистора VT1. Ток I1 зависит от напря­жения на неинвертирующем входе ОУ, от сопротивления резистора R3; Il = ER2l(R1+R2)R3. Поскольку падение напряжения на переходе база — эмиттер у однотипных транзисторов мало отличаются (прак­тически не отличаются), то ток I2 будет обладать стабильностью, аналогичной стабильности тока I1. Ток определяется выражением I2=ER2/(Ri+R2)R4. Выходные токи связаны между собой зависи­мостью I2=Il(R3/R4).



 

9. ПРЕОБРАЗОВАТЕЛИ «НАПРЯЖЕНИЕ — ТОК»

Мощный преобразователь «напряжение — ток». В схеме преобразователя на рис. 2.37 коллекторный ток транзистора VT4 определяется выражением li=U3$R. Этот ток создает падение на­пряжения на переходе коллектор — эмиттер транзистора VTL.



                          Рис. 2.37

Поскольку транзисторы VT1 и VT2 одного типа, то на втором транзисторе будет аналогичное напряжение. Это напряжение вы­звано током, протекающим через транзистор VT3. Максимальный выходной ток определяется допу­стимой мощностью рассеивания транзистора VT3. Для токов свы­ше 5 мА линейность преобразова­ния выше 1%. Для стабилизации работы ОУ необходимо между вы­водами 5 и 6 подключить конден­сатор С = 56 пФ, а между выхо­дами 1 и 8 — последовательно включенные резистор R = 1,5 кОм и конденсатор С=300 пФ. Двухполярный источник тока. Схема преобразования источника напряжения в двухполярный источник тока (рис. 2.38) построена на основе генератора тока, выполненного на полевом транзисторе. Независимо от полярности входного напряжения на сток транзисто­ра подается минус по отношению к истоку. Он всегда находится в нормальном режиме включения. Это достигается диодной мостовой схемой. Транзистор начинает проводить при входном напряжении больше 1,4 В. Режим стабилизации тока происходит при U>6 В.

В устройстве вместо диодов КД503 можно применить интеграль­ную микросхему КЦ403, а для выходного тока более 100 мА — К142НД5 при соответствующей замене полевого транзистора на КП903В.



                                                          Рис. 2.38

Преобразователь «напряжение — ток». Преобразование напря жения в ток осуществляется на выходе ОУ DA1 (рис., 2.39). Две по­следующие интегральные микросхемы осуществляют контроль вы-

.ходного тока. Микросхема DA2 является повторителем, а на выходе интегральной микросхемы DA3 устанавливается напряжение, равное падению напряжения на резисторе R3. Это напряжение подается на вход ОУ DA1, где оно сравнивается с входным напряжением.


Кру­тизна передаточной характеристики равна 0,5 мА/В. При этом нелинейность характеристики не хуже 0,05 % при сопротивлении нагруз­ки меньше 1 кОм. Выходной ток регулируется в пределах от — 5 до +5мА. Температурная нестабильность выходного тока 0,01 мкА/град. Выходное сопротивление более 5 кОм.

Двухполярный преобразователь «напряжение — ток». Основные параметры схемы на рис. 2.40 описываются выражением



где Iн — ток, протекающий на выходе схемы; U2 — напряжение на выходе интегральной микросхемы DA1. Если сопротивления резисто­ров выбраны таким образом, что R1/(R1+R2)=Rз/(Rз+R4), то Iп= = Uвх/R5. В зависимости от знака входного напряжения выходной ток может иметь как положительную, так и отрицательную поляр­ность.



                   Рис. 2.39                                  Рис 2.40



                                          Рис. 2.41

Преобразователь «ток — напряжение». Преобразователь (рис. 2.41) построен на принципе усилении напряжения, которое образуется на низкоомном сопротивлении от протекающего входного тока Uвых=КIвх. Коэффициент преобразования схемы K-= R6(R3/R4). Для настройки ОУ при Iвх=0 служит резистор R2.

В схеме рис. 2.41, с часть входного тока ответвляется в цепь Ri+R3. В схеме рис. 2.41,6 потери входного тока отсутствуют. Здесь можно увеличить коэффициент преобразования до 100, уменьшить сопротив­ление резистора R4 и увеличить R5.

10. КАСКОДНОЕ ВКЛЮЧЕНИЕ

Управляемый делитель на транзисторах. Делитель напряжения (рис. 2.42) построен на двух транзисторах, у которых используются сопротивления перехода эмиттер — база. Эти сопротивления меняют­ся в зависимости от протекающего через них тока. Зависимость ослабления выходного сигнала от управляющего тока показана на рис. 2.42, б. При управляющих токах около 1 мкА ослабление сигна­ла может достигать 103 раз.



                                          Рис. 2.42



                               Рис. 2.43

Каскодное включение полевого и биполярного транзисторов.Приведенные на рис. 2.43 схемы включения имеют большое входное сопротивление. Коэффициент пер.едачи определяется структурной схемой. Он зависит от h21Э — h21Б (1 — h21Б) — коэффициента передачи биполярного транзистора и от s — крутизны полевого транзи­стора. На рис. 2.43, а устройство имеет коэффициент передачи





КОМПАРАТОРЫ, СРАВНИВАЮЩИЕ УСТРОЙСТВА, ОГРАНИЧИТЕЛИ


Базовым элементом большинства приборов автоматики явля­ются пороговое или сравнивающее устройство. Основой этих уст­ройств является усилитель с большим коэффициентом усиления и с ПОС. Выходной сигнал пороговых устройств может быть как переменным, так и постоянным. Устройства разрабатывают различ­ными способами с привлечением самых разнообразных элементов. Однако все они могут быть разделены на две основные группы. В схемах сравнения применяют линейные и нелинейные элементы. Линейные схемы сравнения выполняют на резисторах с ОУ. Усилитель увеличивает рассогласование сравниваемых сигналов. В момент равенства сигналов меняется полярность выходного сигнала усилителя. Линейные схемы сравнения, в частности с нуле­вым опорным уровнем, являются ограничителями исследуемого сиг­нала. В этих схемах входной сигнал преобразуется в сигнал релей­ного вида. Порог срабатывания может устанавливаться на любом уровне.

Нелинейные схемы сравнения имеют ПОС. При незначительном переходе исследуемым сигналом опорного уровня на выходе уси­лителя рассогласования возникает сигнал, который поступает на вход и увеличивает рассогласование. Эти схемы обладают большей чувствительностью, чем линейные. Однако нелинейные схемы из-за ПОС имеют характеристику гистерезисного типа.

Сравнивающие устройства, применяемые в качестве ограничите­лей, имеют ряд специфических особенностей. Эти устройства поз­воляют убрать паразитную AM высокочастотных колебаний при приеме ЧМ сигнала. Кроме того, их применяют при дискретных (цифровых) методах обработки. В этом случае гармонические ко­лебания преобразуются в импульсные сигналы.

Схемы включения ОУ, которые используются в устройствах, по­казаны в гл. 1.

1. ОГРАНИЧИТЕЛИ

Ограничитель на транзисторах в схеме с ОБ. Устройство (рис. 13.1) ограничивает входной сигнал по двум уровням (±1 В). Эти уровни задаются напряжениями в базах транзисторов. По­ложительный: уровень устанавливается на базе транзистора VT1, а отрицательный — на базе VT2. Когда входной сигнал превышает +1 В, открывается транзистор VT1 и через эмиттерную цепь ог­раничивается входной сигнал.
Внутреннее сопротивление этого ог­раничителя составляет 10 Ом.



                   Рис. 13.1                      Рис. 13.2

Индикатор нуля. На вход индикатора (рис. 13.2) подается си­нусоидальный сигнал с амплитудой больше 1 В. Частота входного сигнала может иметь значения от 0 до 100 кГц. На выходе инди­катора формируются отрицательные импульсы длительностью 50 мкс. Импульсы формируются в тот момент, когда входной сиг­нал проходит через нулевое зна­чение. Отрицательная полуволна входного сигнала через R1 пода­ется на эмиттер транзистора VT3 и открывает его. В это время тран­зистор VT2 находится в закрытом состоянии. Когда на входе суще­ствует положительная полуволна синусоидального сигнала, в откры­том состоянии находится тран­зистор VT1. Транзистор VT2 опять будет закрыт. И только в тот момент, когда оба транзистора VT1 и VT3 закрыты, открывается транзистор VT2. Этот момент наступает при переходе входного сиг­нала через нулевое значение. В индикаторе можно применить ин­тегральную микросхему К198НТ1.

Ограничитель на ОУ. Устройство (рис. 13.3) позволяет менять уровень ограничения сигнала. На Вход 1 подается переменный сиг­нал, а на Вход 2 — напряжение, соответствующее уровню ограни­чения. При задании нулевого порога на инвертирующем входе ОУ резистор R2 можно не ставить. Максимальная амплитуда входного сигнала 3 В. Ограничитель работает на частотах не более 1 МГц.



                   Рис. 13.3                                              Рис. 13.4



                                                          Рис. 135

Однополярный ограничитель. Входной сигнал (рис. 13.4) одно­временно поступает на два ОУ, но на разные по полярности входы. ПеЪвый усилитель ограничивает входной сигнал с уровня Е1, а вто-Р0и усилитель — с уровня Е2. Эти уровни можно в широких пре-Д£лах менять. В частном случае, когда £| = £2=0, ограничитель фиксирует момент перехода входного сигнала через нуль.

Двухуровневый компаратор. Приведенная на рис. 13.5, а схема включения сдвоенного компаратора позволяет выделить входной сигнал, лежащий между двумя уровнями.


Эти уровни могут регу­лироваться в широких пределах. Если входной сигнал меньше зна­чения ei, на выходе присутствует положительное напряжение. Ана­логичное напряжение будет и при превышении входным сигналом значения £2. В промежутке между уровнями ei и £2 на выходе бу­дет сигнал, близкий к нулевому. Аналогичную схему (рис. 13.5, б) можно построить на двух ОУ. Однако она будет значительно усту­пать по быстродействию интегральной микросхемы К521СА1.

Ограничитель на интегральной микросхеме К284ПУ1. В качест­ве усилителя в микросхеме (рис. 13.6, а) использован бескорпус­ный твердотельный ОУ типа К740УД1. Элементы коррекции раз­мещены внутри интегральной микросхемы. Амплитудно-частотная характеристика усилителя приведена на рис. 136, а. Коэффициент усиления равен (1,2 — 8)104. Напряжение смещения не превышает 7,5 мВ. Разность входных токов не превышает 0,5 мкА, а входные токи — 1,5 мкА. Максимальный входной синфазный сигнал равен 8 В. Максимальный дифференциальный входной сигнал +5 В, Входное сопротивление около 50 кОм. Коэффициент ослабления синфазного входного напряжения более 65 дБ. Температурный дрейф напряжения смещения 6 мкВ/град. Температурный дрейф разности входных токов 1,5 нА/град. Скорость нарастания выходно­го сигнала 1 В/мкс. В микросхеме введены два стабилитрона с на­пряжением стабилизации 10 В. Стабилитроны включены навстречу друг другу с дифференциальным сопротивлением 220 Ом и макси­мально допустимым током 2 мА.

На рис. 13.6, б приведена схема двухполярного ограничителя на основе К284ПУ1. Максимальная амплитуда выходного сигнала рас­считывается по формулам



где RВ = 143 кОм; Uд = 0,7 В — прямое падение напряжения на внут­реннем диоде.

На рис. 13.6, в, г показаны две схемы ограничителей входного сигнала положительной полярности, а на рис. 13.6, д, е — ограни­чители отрицательной полярности.



Рис. 136

Ограничитель с динамическим сопротивлением. Порог открыва­ния первого транзистора (рис. 13.7, а) устанавливается делителем R4, R6. В эмиттер включен транзистор VT3. Когда входное напря­жение превысит установленный порог, транзисторы VT1 и VT2 от­крываются и происходит лавинообразный процесс Коллекторный ток транзистора VT2 переводит транзистор VT3 в насыщение По­роговое напряжение уменьшается до нуля.


Через базовую цепь транзистора VT1 будет протекать большой ток, который переведет транзисторы VT1 и VT2 в насыщение. При уменьшении входного напряжения транзисторы VT1 и VT2 выходят из насыщения При малых токах транзистора VT2 увеличивается напряжение на кол­лекторе транзистора VT1. В результате схема возвращается в исходное состояние. Переходные характеристики ограничителя приве­дены на рис. 13.7, б.

Ограничитель базового тока. Ограничитель (рис. 138, а) охва­чен ПОС через резистор R3. За счет этого ограничитель имеет пе­редаточную характеристику гистерезисного типа. Ширину гистере-знсной петли можно регулировать резистором R1. С увеличением сопротивления этого резистора верхняя граница петли гистерезиса увеличивается. Нижняя граница не меняется при изменении сопро­тивления любых резисторов. Она определяется порогом открыва­ния транзистора VT1. Кроме того, на гистерезис влияет сопротив­ление резистора R4. При сопротивлении резистора R4, равном 3 кОм, меняется характер работы устройства, гистерезис исчезает. Ограничитель обладает большим коэффициентом усиления, в пер­вую очередь определенным сопротивлением резистора R2. На рис. 13.8, б приведены переходные характеристики ограничителя.



                                          Рис. 13.7

Ограничитель на ОУ со стабилизацией нуля. Для исключения временного и температурного дрейфа нуля ОУ в схему ограничите­ля (рис. 13.9) введены два транзистора. Выходные сигналы транзи­сторов объединяются и фильтруются с целью выделения постоянной составляющей. При подаче на вход гармонического сигнала на вы­ходе сбалансированного ОУ должен быть прямоугольный сигнал с равными положительными и отрицательными полупериодами. На выходе фильтра при этом постоянная составляющая будет отсутствовать. При разбалансе ограни­чителя возникает разница в дли­тельностях полупериодов. На вы­ходе фильтра выделяется посто­янная составляющая, которая из­меняет режим ОУ. Постоянная времени фильтра выбрана так, чтобы фильтр не пропускал со­ставляющие с частотами, кратны­ми частоте входного сигнала.


Дрейф нуля уменьшается до 10 мкВ за 1 ч. Включение коррек­тирующих элементов ОУ можно найти в гл. 1.



                                          Рис. 13.8                                                          Рис. 13.9

Ограничитель высокочастотных сигналов. Ограничитель сигналов с частотами до 5 МГц (рис. 13.10, а) можно построить на микро­схеме К228СА2 (рис. 13.10, б). Чувствительность схемы зависит от частоты (рис. 13.10, б). Ограничитель имеет парафазный выход. Максимальный уровень выходного напряжения не менее 2,8 В, а минимальный уровень — не более 0,4 В. Входной ток менее 40 мкА.



                                          Рис. 13.10

2. ПРЕОБРАЗОВАТЕЛИ ФОРМЫ СИГНАЛА

Транзисторная схема триггера Шмитта. Триггер Шмитта (рис. 1311, а) является двухкаскадным усилителем с нелинейной ПОС. Когда на входе напряжение отсутствует, транзистор VT1 закрыт. На его коллекторе существует напряжение, которое откры­вает транзистор VT2. Эмиттерный ток транзистора VT2 создает падение -напряжения на сопротивлении R3, которое закрывает тран­зистор VT1. Если входное напряжение превысит напряжение в эмиттере, то транзистор VT1 откроется и перейдет в насыщение.



                                           Рис. 13.11

В результате потенциалы базы и эмиттера транзистора VT2 будут равны. Транзистор VT2 закроется. На выходе установится напря­жение, равное напряжению питания.

При уменьшении входного напряжения транзистор VT1 вы­ходит из режима насыщения. Наступает лавинообразный процесс. Эмиттерный ток транзистора VT2, создающий закрывающее на­пряжение на резисторе R3, ускоряет закрывание транзистора VT1. В результате триггер возвращается в исходное состояние. Основ­ные характеристики схемы показаны на рис. 13.11, б.



                                                          Рис. 13.12

Триггер Шмитта на ОУ. Здесь (рис. 13.12, а) в качестве порого­вого элемента используется ОУ с ПОС. Связь зависит от сопро­тивлений резисторов. Для простоты расчета основных характери­стик схемы можно принять R1 равным 10 Ом.


После того как бу­дут рассчитаны резисторы R2 и R3, можно все номиналы пропор­ционально умножить на коэффициент, который обеспечит подходящие сопротивления резисторов. Резисторы R2 и R3 рассчитываются по формулам



Однако сопротивления резисторов не должны превышать 1/10 вход­ного сопротивления ОУ. Эпюры входного и выходного напряже­ний приведены на рис. 13.12, б.



                                          Рис. 13.13

Гистерезисная пороговая схема на ОУ. Для выбора параметров схемы (рис. 13.13) следует предположить, что входное сопротивле­ние усилителя значительно больше сопротивлений применяемых резисторов, а выходное сопротивление значительно меньше сопро­тивления нагрузки. При равенстве E1=E2 можно написать Ei=E2= = R2Eн/(Rl+R2). Значение E2 определяется как E2=RA/(R3+Rt)Ea+ +R3/(R3+R4)EO. Приравнивая эти уравнения, получим EВ=



Нулевое напряжение смещения получается при условии R1R2/(R1+R2)=R3R4/(R3+R4). Напряже­ния, при которых схема переходит из одного состояния в другое, определяется из уравнений



С помощью этих выражений получим R4=R3(Eol — E02)/(U1 — U2).

Гистерезисные схемы на усилителе К284УД1. На рис. 13.14 при­ведены четыре схемы на ОУ К284УД1, которые имеют передаточ­ные характеристики гистерезисного вида. Основные параметры ха­рактеристик можно рассчитать по следующим формулам.

Для схемы рис.





Uсм — напряжение смещения микросхемы; E0, Emax, Emin, Uсм берутся с учетом знака.



                                          Рис. 13.15



                                          Рис. 13.16

Ограничитель с управляемыми порогами срабатывания. Усили­тель-ограничитель построен на трех ОУ (рис. 13.15) и создает вы­ходной сигнал, пропорциональный входному сигналу до тех пор, пока входной сигнал находится между уровнями ограничения. По­роги ограничения устанавливаются на входе ОУ DA2 и DA3. Когда выходной сигнал превышает эти уровни, открывается один из уси­лителей и через диод подается сигнал ООС на вход ОУ DA1. Коэф­фициент усиления ОУ DA1 резко уменьшается.


Происходит ограни­ чение входного сигнала. Уровни ограничения в интегральных ми­кросхемах могут меняться от нуля до максимально допустимого на­пряжения на входе ОУ.

Двухполярный ограничитель на интегральной микросхеме. В ог­раничителе (рис. 13.16) пороговыми элементами являются два тран­зистора. Уровни ограничения устанавливаются напряжением на ба­зах. Когда входной сигнал меньше 0,3 В (при уровнях ограниче­ния ±3 В), он полностью передается на выход ОУ с коэффициен­том усиления 10. При превышении входным сигналом этого значе­ния открывается транзистор и коэффициент усиления резко умень­шается. Положительная полярность входного сигнала ограничива­ется транзистором VT2, а транзистор VT1 ограничивает отрица­тельную полярность входного сигнала. Уровни ограничения можно менять в широких пределах: от нуля до максимального выходного сигнала интегральной микросхемы.

Односторонние ограничители. В ограничителях (рис. 13.17) цепь ООС состоит из нелинейных элементов. Для положительного вход­ного сигнала применяется схема рис. 13.17, а, а для отрицательного сигнала — рис. 13.17, б. Когда напряжение на выходе ОУ не пре­вышает напряжения пробоя стабилитрона, выходной сигнал линей­но зависит от входного сигнала с коэффициентом передачи R2/R1. Когда напряжение на выходе ОУ больше напряжения пробоя ста­билитрона, происходит ограничение. В этом случае коэффициент передачи ОУ резко падает до (rд+rс)/R1, где rД, rс — внутренние со­противления диода и стабилитрона. Порогом ограничения можно управлять с помощью напряжения Е. Это напряжение можно ме­нять в широких пределах, причем уровень ограничения может уве­личиваться, уменьшаться и даже менять знак. В приведенной схеме можно использовать ОУ различных типов.



                                          Рис. 13.17



                                          Рис. 13.18

Двухсторонний ограничитель. Схемы (рис. 13.18) имеют два порога ограничения. Один порог ограничения определяется напря­жением пробоя стабилитрона, а второй зависит от падения напря­жения на открытом стабилитроне.


Прямое падение напряжения стабилитрона близко к значению 0,7 В. Если в схеме (рнс. 13.18, а) управляющее напряжение имеет положительную полярность, то уровень пробоя стабилитрона уменьшается. При отрицательной по=-лярности управляющего напряжения происходит смещение напря­жения пробоя стабилитрона в прямом направлении и тем самым повышается нижний уровень ограничения.

При всех значениях управляющего напряжения на входе появ­ляется постоянная составляющая, которая иногда может привести к нежелательным последствиям. Чтобы исключить влияние управля­ющего напряжения на вход, в схеме (рис. 13.18, б) применена токо­вая регулировка порогами ограничения. Напряжение на выходе ме­няется в зависимости от управляющего сигнала UВЫХ= (R2/R3)E. На инвертирующем входе напряжение остается равным нулю. Ме­няя полярность Е, можно устанавливать разные уровни ограниче­ния. В ограничителе можно применить различные ОУ.

Ограничитель с динамическим порогом. Операционный усили­тель, являющийся основным элементом ограничителя (рис. 13.19), имеет две цепи ООС: положительная полярность входного сигнала проходит через диод VD2 и резистор R3, а отрицательная поляр­ность — через VD1 и R2. На выходе включен интегрирующий фильтр с общей для обеих цепей емкостью, на которой выделяется разностная постоянная составляю­щая. Если входной сигнал сим­метричен относительно нулевого значения, то на конденсаторе при R4 — R5 будет нулевой потенциал. При возникновении асимметрии постоянная составляющая, выде­ленная на конденсаторе будет дей­ствовать на инвертирующем входе ОУ. Это напряжение будет по­рогом ограничения входного сиг­нала. Продолжительность дейст­вия порога ограничения зависит от времени разряда конденсатора через резисторы R4 и R5. Если параллельно резисторам R4 и R5 включить диоды, то можно разде­лить цепи разряда и заряда конденсатора.



       Рис. 13.19                                            Рис. 13.20

«Гистерезисный» ограничитель. Для рассмотрения работы огра­ничителя (рис. 13.20) положим E = 0.


На стабилитроне за счет ПОС устанавливается напряжение Uc. На неинвертирующем входе при­сутствует пороговое напряжение, равное U0= (R1/R2) Uc. При пре­вышении входным сигналом напряжения U0 ОУ переключается. На выходе появляется сигнал отрицательной полярности. Положитель­ная обратная связь отключается. В исходное состояние ОУ возвра­щается при нулевом входном сигнале.

Для напряжения UC>E>0 ОУ переключается при напряжении на входе U1 — E+(R1/R2)U0. В исходное состояние ОУ возвращает­ся при входном сигнале, равном Е. Если E>UC, то ОУ работает как ограничитель входного сигнала с порогом E. При замене стаби­литрона транзистором с регулируемым базовым напряжением мож­но получить ограничитель с меняющейся границей переключения.

Ограничитель на стабилитронах. Ограничитель низкочастотных сигналов состоит из ОУ, коэффициент усиления которого опреде­ляется отношением сопротивлений резисторов R2/R1, и двумя стаби­литронами, включенными навстречу друг другу (рис. 13.21, а). Этот ограничитель из-за большой емкости стабилитронов удовлетвори­тельно работает с сигналами, частоты которых меньше 5 кГц. Для ограничения сигналов, частоты которых лежат выше 100 кГц, луч­ше использовать схему на рис. 13.21, б. Здесь стабилитрон включен в диагональ моста и через него протекает ток. В этом режиме стабилитрон находится в области малого внутреннего сопротивле­ния и влияние его емкости значительно ослаблено. В результате на порядок увеличивается частотный диапазон ограничителя. Темпера­турный дрейф первого ограничителя равен 10 мВ/град, а второго — 1 мВ/град.



                                          Рис. 13.21



       Рис. 13.22                                Рис. 13.23

Преобразователь синус-меандр. Формирователь (рис. 13.22) преобразует напряжение синусоидальной формы в импульсное. Ам­плитуда прямоугольного выходного сигнала прямо пропорциональ­на амплитуде гармонического сигнала. Входной сигнал (более 0,5 В) проходит через диод VD2 и заряжает конденсатор С1.


Постоянное напряжение на этом конденсаторе служит напряжением питания для транзистора. Входной сигнал проходит в базовую цепь транзи­стора через резистор R2. С частотой входного сигнала переключа­ется транзистор. Для улучшения фронта прямоугольного импульса параллельно резистору R2 включен конденсатор. Максимальная ра­бочая частота формирователя равна 20 кГц.

Ограничитель гармонического сигнала. Устройство (рис. 13.23) преобразует гармонический сигнал в импульсный. Отрицательная полуволна гармонического сигнала через диод VD2 заряжает кон­денсатор. За это время открывается транзистор. Положительная полуволна закрывает транзистор. В результате постоянное напря­жение на конденсаторе преобразуется транзистором в переменное. Частота следования импульсов определяется частотой входного сиг­нала. Минимальный сигнал, с которого начинается преобразование, равен 200 мВ.

3. ПОРОГОВЫЕ УСТРОЙСТВА

Многопороговое устройство. Для формирования сдвину­тых во времени сигналов применяется устройство (рис. 13.24) с десятью пороговыми уровнями. Уровни открывания устанавлива­ются диодной цепочкой. Дискретность уровней равна 1 В. На вхо­де существует переменный сигнал. Форма сигнала должна быть на­растающей (синусоидальная, треугольной формы). С увеличением входного сигнала вначале открывается транзистором VT10, затем VT9 и т. д.

Устройство с малой петлей гистерезиса. В схеме сравнения двух напряжений (рис. 13.25) применяется запаздывающая ОС. Эта связь позволяет уменьшить гистерезис передаточной характеристики ре­лаксационной схемы. На входе устройства стоит дифференциаль­ный усилитель, выходной сигнал которого подается на формирователь, построенный на транзисторах с разными типами проводимости и охваченным ПОС через цепоч­ку R2C1. Кроме того, с коллекто­ра транзистора VT2 подается ООС через цепочку R3, С2. Отрицатель­ная обратная связь через время r=RiCz компенсирует действие ПОС. При полной конденсации получается безгистерезисное уст­ройство сравнения.


Если ООС опе­режает действие ПОС, то в схеме возникают колебания. Для ука­занных на схеме номиналов эле­ментов устройство имеет время срабатывания 30 — 40 не, время от­пускания 80 — 100 не, диапазон сравниваемых напряжений от — 3 до +4,5 В, ширина гистерезисной петли менее 0,4 мВ. Порог срабатывания схемы можно регулировать резистором R1 в пределах от — 15 до +15 мВ. Стабильность уров­ня срабатывания не хуже 40 — 50 мкВ/град.



       Рис. 13.24

Преобразователь гармонического сигнала в прямоугольный. Преобразование сигнала (рис. 13.26) осуществляется за счет насы­щения транзисторов. Положительная полуволна входного сигнала шунтируется диодои VD1. Отрицательная полуволна открывает транзистор VT1. Коллекторный ток этого транзистора открывает транзистор VT2. Отрицательное напряжение 5 В проходит через диоды VD2 и VD3 и подается на выход. Когда на входе будет по­ложительная полуволна, транзистор VT2 закрыт. Положительное напряжение на коллекторе откроет транзистор VT3. В эмиттерной цепи этого транзистора появляется положительное напряжение.



                                          Рис. 13.25

Выходное сопротивление устройства для однополярного сигнала менее 500 Ом, а для двухполярного — 20 кОм; частота входного сигнала 1 кГц, амплитуда 5 В.

Ограничитель-дискриминатор. Устройство (рис. 13.27) имеет регулируемый порог ограничения. Входной сигнал с амплитудой 1 В может быть разделен на две составляющие. При установке на входе 10 напряжения 1 В на выход проходит сигнал положитель­ной полярности. Установкой на входе 10 напряжения — 1 В на вы­ходе формируется сигнал отрицательной полярности.



                                          Рис. 13.26



                                          Рис. 13.27



                               Рис. 13.28



                               Рис. 13.29

Разделитель сигна­лов. Устройство (рис. 13.28) позволяет разде­лить положительные и отрицательные полувол­ны сигнала при сохране­нии уровня постоянной составляющей.


Отрица­тельная полярность вход­ ного сигнала открывает транзистор VT1 и тем самым эта полуволна срезается на выходе. На­против, положительная полярность сигнала закрывает транзистор VT1, она проходит на выход схемы. Вторая половина схемы рабо­тает аналогичным образом и пропускает отрицательную полуволну. Чтобы избежать падения напряжения на резисторах R1 и R2, со­противление нагрузки должно иметь большое значение. Резистор R8 является коллектерной нагрузкой для обоих транзисторов. Гра­ничная частота определяется емкостью конденсаторов С1 и С2. Для указанных номиналов частота равняется 5 кГц.

Пороговое устройство. В пороговом устройстве (рис. 13.29) ис­пользуются элементы ИЛИ/ИЛИ — НЕ. Через резистор R2 в схему вводится ПОС, а резистор R1 развязывает источник сигнала от входа схемы. В зависимости от отношения сопротивлений резисто­ров R1/R2 схема обладает различной шириной тистерезисной петли. Кроме указанной микросхемы, в схеме могут применяться инте­гральные микросхемы серии К137 и К138.

Сравнивающее устройство. Сравнивающее yqTpoflcTBO (рис. 13.30) вырабатывает выходной сигнал, длительность которого равна дли­тельности превышения одного входного сигнала над другим. Диф­ференциальные усилители включены последовательно один за дру­гим и работают в режиме ограничения сигнала, рассогласования. Количество включенных последовательных усилителей определяет ширину зоны нечувствительности устройства.



                                          Рис. 13.30



                               Рис 13.31

При изменении напряжения питания на ±10 % ширина зоны нечувствительности не более 1 мВ Дрейф порога срабатывания не более 15 мкВ/град в диапазоне температур 20 — 70°С Максималь­ная амплитуда входного сигнала ±2 В, диапазон рабочих частот О — 500 кГц Выходной сигнат более 4 В

Компараторы на микросхемах К133ЛАЗ. Компаратор (рис 13.31, а) построен на одном элементе 2И — НЕ интегральной микросхемы К133ЛАЗ Порог срабатывания микросхемы зависит от отрицательного напряжения на выводе 7 Схема одного элемен­та 2И — НЕ, входящего в К133ЛАЗ, и передаточная характеристи­ка схемы рис 13.31, с при различных пороговых напряжениях по­казана на рис 13.31, в При нулевом напряжении на входе компа­ратор переключается с уровня Е= — 1,25 В Напряжение срабаты­вания компаратора менее 100 мВ Время включения компаратора 40 не, а выключения — 60 не Поскольку в микросхеме имеются че­тыре логических элемента, то ток, протекающий через контакт 7, будет являться суммарным Для всех четырех логических элемен­тов уровень срабатывания одинаков



Компаратор на рис 13.31, б построен на четырех логических элементах Все элементы находятся в режиме, близком к линейно­му Это достигнуто введением резисторов R3 — R6 Передаточная характеристика элемента 2И — НЕ в зависимости от сопротивления на его входе показана на рис 1331, г Регулировкой входного со­противления можно управлять напряжением на выходе элемента.



                                          Рис 13.32

Входной сигнал подается в точку, где напряжение равно нулю Этот уровень устанавливается резистором R2 Время включения и выключения компаратора определяется временем переключения одного элемента Один элемент имеет время задержки включения не более 18 не, а время задержки выключения не более 36 не Чув­ствительность схемы составляет 1 — 2 мВ

Компаратор на логических элементах. Компаратор напряжения построен на двух логических элементах микросхемы К133ЛАЗ На рис 1332, а изображена схема, в которой сравниваются два напря­жения На Вход 1 подается эталонное напряжение, а на Вход 2 — исследуемое Чувствительность схемы равна 5 мВ Если сигнал в точке соединения резисторов R1 — R3 меньше 3 мВ, то на выходе су­ществует постоян шй уровень 2 В При сигнале с напряжением 4 мВ формируется отрицатечьный импучьс (рис 1332, в), а сигнал с напряжением 5 мВ вызывает появление положительного им­пульса

Для управления порогом срабатывания компаратора (рис 1332, б) на вход 2 элемента DD1 подается напряжение Это напряжение определяет порог срабатывания схемы как для по­ложительных, так и лля отрицательных попярностей входного сиг­нала Двухполяоныи выходной сигнал формируется от гармониче­ского входного сигнала с амплитудой 4 мВ Точная настройка схе­мы позволяет увеличить чувствительность до 1 мВ Однако в этом случае выходной сигнал меняется от +2 до 0 В

Дифференциальная схема компаратора. Компаратор (рис 1333) построен по дифференциальной схеме Чувствительность схемы со­ставляет 1 мВ при времени переключения менее 50 не Высокое бы­стродействие и большая чувствительность схемы достигнуты за счет того, что все интегральные микросхемы находятся в режиме, близком к линейному, что обеспечивается правильным выбором со­противлении резисторов Порог срабатывания можно регулировать в пределах ±100 мВ при подаче напряжения на один из входов Кроме того, управлять порогом срабатывания можно и с помощью потенциометра R6 В этом случае пределы регулировки расширя­ются до 0,5 В Можно и дальше увеличивать порог срабатывания схемы, если уменьшать сопротив­ление резистора R2. Предельным уровнем является напряжение 1,4 В выводах 2, 4 (при дальней шем повышении напряжения чувствительность схемы резко падает).


Интегральные микросхемы компараторов. Микросхемы К521СА1 и К521СА2 являются компараторами напряжения (рис. 13.34, а, б). Микросхема К521СА1 — сдвоенный компаратор. Стробирование по каждому каналу позволяет поочередно опрашивать оба компарато­ра. Амплитуда стробнрующего импульса 6 В. По электрическим па­раметрам компараторы подобны. Коэффициент усиления компара­торов меняется от температуры (рис. 13.34, в) Изменение входного тока от температуры показано на рис. 13.34, г. Быстродействие ком­параторов зависит от амплитуды входного сигнала. Эпюры сигналов включения и выключения компаратора показаны на рис. 13.34, д, е. Электрические схемы включения приведены на рис. 13.34, ж, з. Максимальная чувствительность компаратора дости­гается, когда напряжение на резисторе R2(R3) равно 100 мВ. Вы­сокий логический уровень на выходе соответствует напряжению 2,5 — 5 В, а низкий — напряжению 0,3 В



       Рис 13.33                                                                     Рис. 13.34



МИКРОСХЕМЫ И СХЕМЫ ИХ ВКЛЮЧЕНИЯ


В настоящее время операционные усилители (ОУ) получи­ли наиболее широкое распространение среди аналоговых интеграль­ных схем. Это обусловлено возможностью реализации на их основе самых различных линейных и нелинейных аналоговых и аналого-цифровых устройств. Различные способы преобразования аналоговых сигналов выдвигают самые разнообразные требования к ОУ. Удов­летворить все эти требования в ОУ одного типа практически невоз­можно. По этой причине промышленностью выпускаются ОУ несколь­ких типов, каждый из которых удовлетворяет ограниченному числу .требований. Все вместе они перекрывают широкий диапазон требо­ваний.

Операционные усилители строятся на основе трех- или двухкас-кадных структурных схем. Трехкаскадная схема содержит каскады входного дифференциального усилителя, усилителя напряжения и усилителя амплитуды сигнала, объединяющего схемы сдвига уровня и формирования выходного сигнала. Выходные эмиттерные повтори-тели, осуществляющие переход к низкоомной нагрузке, в формирова­нии коэффициента усиления- ОУ не участвуют. В двухкаскадных ОУ входной каскад объединяет функции дифференциального усилителя и усилителя напряжения.

Большое количество различных типов ОУ, выпускаемых серийно, можно разбить на две большие группы по их элементной базе. Пер­вая из этих групп, в которую входят в основном ОУ первого поко­ления, характеризуется использованием главным образом транзисто­ров типа n-р-n и большого количества резисторов, в то время как интегральные ОУ второй группы отличаются применением компле­ментарных структур (совокупностью транзисторов типов n-р-n и р-n-р) и резким уменьшением количества резисторов. К первой груп­пе относятся трехкаскадные ОУ типа К153УД1, а ко второй — двух-каскадные типа К140УД7. Параметры ОУ второй группы значитель­но лучше. Так, у ОУ типа К140УД7 более широкий диапазон измене­ния входного дифференциального напряжения, простая схема ком­пенсации смещения, встроенный МОП-конденсатор емкостью около 30 пФ, обеспечивающий устойчивость ОУ для любой конфигурации и параметров цепи обратной связи (ОС).
Кроме того, предусмотрена защита ОУ от коротких замыканий по выходу.

Возможности использования современных ОУ можно расширить еще больше, если создать условия для изменения некоторых из его параметров под воздействием внешних управляющих сигналов. Опе­рационные усилители такого типа обычно называют программируе­мыми. Программируемым ОУ является микросхема К.140УД12.

Основные метрологические характеристики ОУ определяются па­раметрами его входного дифференциального каскада. Простейшая схема этого каскада представлена на рис. 1.1. Вольт-амперную ха­рактеристику эмиттерного диода транзистора с достаточной степенью точности можно описать выражением вида

Iэ=Iэвоexp UБЭ/Фт.                                          (1)

где фт — температурный потенциал (для Т=300 К фт = 26 мВ); IЭБО — обратный ток эмиттера; UБЭ — управляющее переходом ба­за — эмиттер напряжение. Это выражение справедливо при UБЭ >фт. По формуле (1) можно вычислить практически все входные пара­метры дифференциального каскада. Так, входное дифференциальное сопротивление ОУ равно Rвх.д = 2h11Б, а коэффициент усиления на­пряжения

Ky.u = UK1/UD = UK2/UD, где UD = Ul—U2.                        (2)

Таким образом, коэффициент усиления напряжения практически ра-. вен половине коэффициента усиления каскада с общим эмиттером (ОЭ), т.е. выражение (2) можно привести к виду Kи.и = h21ЕRк/2h11Е. Сюда входит входное сопротивление h11В каскада с общим эмитте­ром, которое зависит от эмиттерного тока транзистора или от номи­нала источника тока дифференциального каскада I0. Если коэффици­ент передачи тока транзистора h21Е>1, то h21Е=h21Ефт/Iэ = 2h21Ефт/I0. Тогда получим Rвх.д = 4h21Ефт/Iо и Kу.и=RкIо/4фт. Эти выражения показывают, что регулировкой источника тока I0 вход­ного дифференциального каскада можно изменять такие параметры ОУ, как коэффициент усиления напряжения и -входное дифферен­циальное сопротивление.

На рис. 1.2 представлены графические зависимости Rвх.д=f(Iо) и Kум=f(I0) для h21Е=100 и Rк=3,5 кОм.


Однако эмиттерный ток входного каскада I0 влияет не только на эти параметры, но и на такие не менее важные характеристики, как входной ток ОУ, ско­рость .нарастания выходного напряжения я потребляемая мощность.

Широко распространенной разновидностью ,ОУ являются так называемые ОУ с переменной крутизной, наиболее характерным параметром которых является управляемая проводимость. Выход­ной каскад усилителя такого типа практически представляет собой источник тока. Программируемый источник тока, который исполь­зуется для питания входного дифференциального каскада и управ­ления параметрами ОУ, реализован по схеме «токового зеркала».

 


Рис. 1.1                                           Рис. 1.2

Вместо коллекторных резисторов применяют аналогичную схему. Принципиальная схема усилителя с переменной крутизной представ­лена на рис, 1.3. Для данной схемы справедливы следующие соотно­шения:



Для суммарного тока дифференциального каскада можно получить



Передаточная проводимость при этом- равна



Схема токового зеркала, используемая для питания дифференциаль­ного каскада и реализованная на транзисторах VT3 и VT4, описы­вается следующим соотношением: S = I0/I3 = h21E/(h21E+2). Если коэффициент передачи тока транзисторов VT3 и VT4 уменьшается до 20, что вполне реально для малых коллекторных токов, то отно­шение 5 равно 0,9 вместо 1, т. е. появляется погрешность передачи токов. Для уменьшения этой погрешности обычно применяют более сложные схемы токового зеркала, позволяющие получить значитель­но меньшую погрешность при равном коэффициенте передачи тока используемых транзисторов. Так, схема, реализованная на транзи­сторах VT13 — VT15, обеспечивает коэффициент усиления K=0,9 при коэффициенте передачи по току h21Е = 4 и описывается выраже­нием



Если к высокоомному выходному каскаду с переменной крутиз­ной подключить буферный эмиттерный повторитель, то в результате получится регулируемый ОУ.



Рис. 1.3



Рис. 1.4



Примером программируемого ОУ является интегральная микро­схема К140УД12. Упрощенная схема этого ОУ приведена на рис. 1.4. Управление входными параметрами ОУ осуществляется регулировкой рабочего тока. Входной каскад ОУ построен по каскодной схеме на комплементарных транзисторах, причем транзисторы типа n-р-n имеют большой коэффициент передачи тока, а у транзисторов типа р-n-р он может изменяться. Тем самым обеспечивается полная сим­метрия входного каскада. Так как эмиттерные токи транзисторов VT1 и VT2 определяются их базовыми токами, то входное сопро­тивление ОУ и коэффициент усиления входного каскада также за­висят от эмиттерных токов VT1 и VT2, а следовательно, могут ре­гулироваться изменением рабочего тока по входам Si, 52. Входное сопротивление такого ОУ примерно в .2 раза больше, чём у ОУ с простейшим дифференциальным каскадом, вследствие использова­ния каскодной схемы. Кроме высокого входного сопротивления кас-кодный усилитель обладает лучшими частотными характеристика­ми, ,в частности, за счет уменьшения коэффициента пересчета емко­стей переходов коллектор — база транзисторов VT1 и VT2 ко входу по сравнению со схемой с общим эмиттером. Эмиттерный повтори­тель на транзисторе VT7 и схема сдвига уровня на транзисторах VT4 и VT6 предназначены для согласования входного дифференци­ального каскада и выходного буферного усилителя. Транзисторы VT21 и VT22 устраняют искажения, возникающие в выходном кас­каде, построенном на комплементарных транзисторах и работающем в режиме АВ. Транзисторы VT23 и VT24 служат для защиты выход­ного каскада от короткого замыкания.

Для формирования управляющего тока I8 могут использовать­ся самые различные способы. Чаще всего для этой цели применяют достаточно высокоомный резистор, который подключают к отрица­тельному полюсу источника питания и при необходимости заменяют источником тока на биполярном или полевом транзисторе.

Помимо коэффициента усиления и входного сопротивления при изменении тока I5 можно регулировать входной ток, токовые шумы и напряжение шумов (ОУ).


При заданном внутреннем сопротивле­нии источника сигнала с помощью регулировки управляющего тока I можно оптимальным образом согласовать шумовые параметры ОУ с характеристиками источника сигнала. При использовании ОУ при минимальном напряжений питания изменением тока управления устанавливается минимальная мощность потребления в режиме покоя.

Таблица 1.1

Тип ОУ

Uп.в

Iпот. МА,

Kу. uminx х103

Uсм. мВ

Iвх. нА

ДIвх. нА

Rвх, МОм

Uвх. сф, В

Uвых, В

Kос.сф, дБ

Kвл,пмкВ/В

ft. МГц

Uuвых,В/мкс

TK Uсм. мкВ/К

TK Iвх, нА/к;

TK ДIвх,

нА/К

Uп.mах

Uп.min

К140УД1А (Б)

±6,3

4,2

0,4

10

8-103

3-103

0,004

±3

±2,8

90

1500

30

3

20

60

30

±12,6)

(8)

0,3)

(12- 103)

(±6)

(±5,7)

К140УД2А (Б)

±6.3

8

35

5

700

200

0,3

±6

±10





2



20







±12,6)

(5)

(3)

(7)

(±3)

(±3)

К140УД5А (Б)

±12,6

12

1.5

8

103

3-102







50



8

3

45

7



13(6)

(16)

(2,5)

(5)

(5-103)

(103)

(60)

(И)

(6)

(6)

(25)

К140УД6А (Б)

±15

2,8

70

5

30

10

3

±11

±11

80

-200

1,0

2,5

20

1

0,1

20(5)

(50)

(8)

(50)

(15)

(2)

(70)

(2)

(40)

(25)

(0,3)

К140УД7А (Б)

±15

2,8

50

4

200

50

0,4

±12

±11,5

70

150

0,8

0,3

2



20(5)

(3,5)

(10)

(550)

(200)

(±10,5)

К140УД8А (Б)

±15

3

50

50

0,1(0,5)

0,1

102

±10

±10

60



1,0

2,5

50

 —





(5)

(20)

(100)

(10О)

К140УД9

±15

3,6

25

2

200

50







80



1,0

0,2

15



3

18(9)

К140УД10

±15

8

50

4

250

50

1

±11,5

±10

80



15

20

2



2

18(5)

К140УД11

±15-

8

25

10

500

300







70



15

20

30





18(5)

К140УД12

±15

0,03

200

5

10

3







70



0,3

0,1







t8(5)

(IУ — 1,5/1 5 мА)

(0,2)

(100)

(5)

(50)

(15)

(1)

(0,8)

К140УД13

±15

4

0,007

0,5

3 -

0,3

50

±10

±0,5

90

10





0,5



0,003



К НОУ ДНА (Б)

±15

0,6

50

2(7,5)

2

0.2

30



±13

85



0,3

0,05

15

0,02

2,5

18(5)

(0,8)

(25)

(7)

(1)

(10)

(0,2)

(30)

(10)

К153УД1А (Б)

±15

6

15

7,5

150

50

0,2

±8

±10

65



1,0

0,2

10

2

0,8

18(9)

К553УД1

±15

6

10

7,5

200

60

0,2

±8

± 9

65



1,0

0.2

10

2

0,8

18(9)

К153УД2

±15

3

50

5

500

200

0,3

±12

±11

70



1,0

0,6

20





18(5)

К553УД2

±15

3

20

7,5

1500

500

0,3

±12

±10

70



1,0

0,6

20





18(5)

К153УДЗ

К553УДЗ

±15

3,6

30

2

200

50

0,3

±8

±10

80



1,0

0,2

10





18(9)

К153УД4

± 6

0,8

2

5

400

15

0,2

±5

± 4

70



1,0

0,1

50



3

7(3)

К153УД5

±15

__

125

2,5

125

35

1,0

±13,5

±10

94



1,0



5



0,5

16(5)

К154УД1 К154УД2 К154УДЗ

±15

±15

±15

0,12 6

7

150 90 8

3 2 9

20 100 200

10 20 30

±10 ±10 ±10

±12 ±10 ±10

85 85 80

100 85 75

1,0 15 15

10 150 80

15 5 10



0,15 0,3 0,05

18(5) 18(5) 18(5)

К157УД1

±15

10

50

5

500

150





±12

70



0,5

0,5

50



10

18(3)

К157УД2

±15

7

50

10

500

150





±13

70



1 ,0

0,5

50



10

18(3)

К544УД1А (Б)

±15

3,5

50 (20)

30 (50)

0,15 (1)

0,05 (0 5)



±13,5

±10

64



1,0

2

30 (10О)







К544УД2 К574УД1А

±15

±15

5,5 5,5

150 150

60 20

0,6 0,1

0,02 0,02

10 10 .

±10

±12

±13 ±12

60 80

100

18 18

90

90

30

0,1

0,006

К574УД1Б К574УД1В

±15

±15

5.5

5,5

150 150

20 60

0,1 0,6

0,02 0,02

10 10

±12 ±12

±12 ±12

60 60

100 100

18 18

90 90

30 30










Примечание: Un — напряжение питания; Iпот — потребляемый ток; Kу и min — минимальный коэффициент усиления; Uсм — напряжение смещения; Iвх — входной ток; ДIвх — разность входных токов; Rвx — входное сопротивление; Uвх cф — максимальное входное синфазное напряжение; Uвых — выходное напряжение; Кос.сф — коэффициент ослабления входного синфазного напряжения; fi — граничная полоса частот; vuвых. — скорость нарастания выходного напряжения; ТК Uca — температурный коэффициент смещения: ТК Iвт — температурный коэффициент входного тока; ТК ДIвх — температурный коэффициент разности входных токов; Un.max/Un.min — пределы изменения питающего напряжения; Kвл. п — коэффициент подавления изменения питающего напряжения.

Основным недостатком программируемого ОУ К140УД12 явля­ется относительно невысокая скорость нарастания выходного сигна­ла, обусловленная применением внутренней цепи коррекции ампли-тудно-частотной характеристики и равная примерно 0,5 В/мкс. Ско­рость нарастания определяет в данном случае и граничную частоту пропускания ОУ для режима большого сигнала. Для синусоидаль­ного напряжения справедливо следующее выражение: wAmах< vu вых, где vUвых — скорость нарастания. Это соотношение опре­деляет условия неискаженной передачи синусоидального сигнала заданной амплитуды Amах и частоты w.

Параметры ОУ. Широкое применение ОУ выдвигает самые раз­нообразные требования к его характеристикам. Их параметры при­ведены в табл. 1.1, рассмотрим некоторые из них.

Коэффициент усиления Kу.и определяется отношением измене­ния выходного напряжения к изменению на входе Kу.и = АUвых/ДUвх. Величина ДUВх = U+ — U-, где U_ — напряжение на инвертирующем, a U+ — на неннвертирующем входах ОУ. В сов­ременных ОУ коэффициент Kу.u = 103 — 106.

Напряжение смещения UСм определяется как дифференциаль­ное напряжение, которое необходимо подать на вход ОУ, чтобы на его выходе установился нулевой потенциал. Напряжение Uсм для ОУ с биполярными транзисторами на входе, может лежать в преде­лах 3 — 10 мВ.


Для ОУ с полевыми транзисторами на входе напря­жение смещения составляет 30 — 100 мВ. Это объясняется в основ­ном большим разбросом напряжения затвор — исток применяемых полевых транзисторов.

Входной ток Iвх определяется среднеарифметическими значе­ниями токоз на инвертирующем и неннвертирующем входах ОУ, когда входное напряжение создает на выходе нулевое напряжение. Этот ток для ОУ с биполярными транзисторами на входе лежит з пределах 0,02 — 10 мкА. Для входных каскадов с полевыми тран­зисторами входные токи равны единицам нанзампер и меньше.

Разность входных токов ДIВх=|I+ — I-| измеряется при нуле­вом выходном напряжении. Эта величина лежит в пределах 20 — 50 % Iвх. Параметр ДIвх характеризует асимметрию входного каскада.

Коэффициент ослабления синфазного входного напряжения Ксс.сф = 20 log Kу.u/Kу.сф — отношение коэффициента усиления на­пряжения к коэффициенту усиления синфазного входного напряже­ния ОУ. Значение Kос.сф лежит в пределах 60 — 100 дБ.

Частота единичного усиления f1 — частота, на которой коэффи­циент усиления ОУ равен единице. Максимальное значение f1 для ОУ может доходить до нескольких десятков мегагерц.

Скорость нарастания выходного напряжения vUвых опреде­ляется при подаче на вход максимально допустимого импульсного сигнала прямоугольном формы с минимальным фронтом или спадом. Для ОУ, поставленного в режим повторителя,.этот параметр лежит в диапазоне 0,3 — 50 В/мкс. Для некоторых типов ОУ лараметр РУВЫХ зависит от полярности входного прямоугольного сигнала.

Коэффициент влияния нестабильности источника питания Kвл.ип для ОУ характеризуется сбалансированностью всех ступеней передачи входного напряжения. Значительный вклад в эту характери­стику вносит входной каскад. При изменении положительного или отрицательного напряжения питания на вьТЧоде ОУ возникает на­пряжение. Отношение приведенного ко входу изменения выходного напряжения к вызывающему его изменению напряжения питания определяет Kвл.ип.Типовое значение Kвл.ип находится в пределах 20 — 200 мкВ/В.



с общими входами: один на


Микросхема К154УД1. Электрическая схема ОУ представ­лена на рис. 1.211. На входе усилителя — два дифференциальных каскада с общими входами: один на транзисторах VT22 и У Т 37 проводимостью типа р-n-р, а второй на транзисторах VT23 и VT36 проводимостью типа n-р-n. Применение на входах транзисторов раз­ного типа проводимости позволяет установить рабочий режим уси­лителя без внешних резисторных цепей и уменьшить входной ток. В эмиттерах транзисторов VT23 и VT3& включены две схемы транс­форматоров тока, которые передают изменения тока одного транзи­стора в цепь другого. Например, увеличение тока транзистора VT23 будет странсформировано в уменьшение тока в транзисторе VT36. Эти функции выполняют транзисторы VT24, VT25 и VT34, VT35, Во втором входном дифференциальном каскаде на транзисто­рах VT23 и VT37 нагрузкой является аналогичная схема. Роль трансформаторов тока выполняют транзисторы VT20, VT21 и VT38, VT39.

Выходные сигналы двух дифференциальных каскадов объединя­ются в точках А. и Б. Нагрузкой для объединенных токов являются транзисторы VT42 — VT44 и VT53, VT57, VT62. Напряжение на тран­зисторах VT42 — VT44 преобразуется в ток транзистора VT45. Во . второй группе нагрузочных транзисторов формируется ток транзисто­ра VT63. Эти токи создают ладение напряжения на транзисторах VT50 — VT52 и VT67, VT69. Через транзисторы VT64 и VT68 сигналы поступают на повторители, собранные на многоэмйттерных транзис­торах VT65 и VT71. Транзисторы VT55 и VT73 являются генерато­рами тока, которые выполняют роль нагрузки в повторителях. С многоэмиттерных транзисторов сигнал поступает в выходной кас­кад на транзисторах VT66 и VT75. Для защиты усилителя от перегрузок по выходному току включены резисторы R5 и Кб. Напря­жение на этих резисторах управляет транзисторами VT56 и VT76. При перегрузках эти транзисторы открываются и изменяют режим усилителя, что приводит к уменьшению выходного тока.

Для согласования режимов работы основных узлов усилителя по постоянному току в схеме применен многоуровневый стабилиза­тор напряжения! Роль этого стабилизатора выполняют транзисторы УТ1 — VT17. Напряжения стабилизатора используются в различных точках схемы.
С их помощью устанавливаются рабочие токи тран­зисторов VT18 и VT40, VT19 и VT41, VT28, VT31 и др.



                                                                   Рис. 1.211

На рис. 1.212 показана амплитудно-частотная характеристика. Изменение максимальной амплитуды выходного сигнала от частоты представлено на рис. 1.213. Относительные изменения коэффициента усиления и напряжения смещения от напряжения питания показаны на рис. 1.214 и 1.215; изменения входного тока, разности входных токов и напряжения смещения — на рис. 1.216 — 1.218. Нагрузочная способность для различных полярностей выходного сигнала представ­лена на рис. 1.219.



       Рис. 1.212                                Рис. 1.213                    Рис. 1.214                    Рис. 1.215

   


       Рис. 1.216                                Рис. 1.217                                Рис. 1.218

 
           


       Рис. 1.219                                Рис. 1.220                                Рис. 1.221

Основная схема включения ОУ изображена на рис. 1.220. В этой схеме должно быть выполнено условие RкR3/(Rк+R3)>2 кОм и Сн=150 пФ. Цепь коррекции в схеме представлена рези­стором Rк=51 Ом и конденсатором Ск, который подбирается исхо­дя из емкости нагрузки Св: Ск (пФ)=Сн (пФ)-0,5 (кОм)/R3 (Ом). В зависимости от номиналов применяемых элементов на выходе уси­лителя рис. 1.221 формируются сигналы различной формы, проиллю­стрированные на рис. 1.222. Для балансировки усилителя приме­няется схема на рис. 1.223.

                     


                   Рис. 1.222                                            Рис. 1.223

Микросхема К154 УД2. Электрическая схема ОУ приведена на рис. 1.224. Входной дифференциальный каскад построен на транзисто­рах VT4 и VT5. В коллектор этих транзисторов включена схема «то­ковое зеркало», выполняющая функции двух генераторов тока и обеспечивающая большое выходное сопротивление. Выходной сигнал дифференциального каскада подается через эмиттерный повторитель на транзисторе VT8 на базу усилительного каскада на транзисторе VT9, в коллекторной цепи которого включены транзисторы VT29__



VT32 и VT26, VT27. Транзисторы VT26 и VT27 являются нагрузкой генератора тока, а транзисторы VT2P — VT32, включенные попарно в диодный режим, создают напряжение смещения для открывания транзисторов в последующих каскадах. Транзисторы VT29 и VT30 .открывают транзисторы VT33 и VT34. Коллекторной нагрузкой тран­зистора VT37 является цепочка R8, VD6 и транзистор VT36 в диод­ном включении. Коллекторной нагрузкой транзистора VT34 является цепочка RIO, VD7 и VT35. Парафазное напряжение с этих нагрузок поступает на базы транзисторов VT39 и VT42, работающих в усили­тельном режиме. В коллекторную цепь этих транзисторов включен составной эмиттерный повторитель на транзисторах VT43 и VT44. Для уменьшения порога открывания выходного каскада используют-, ся два транзистбра VT40 и VT41, на которых создается постоянное напряжение, близкое к 1,4 В.

Поскольку в схеме ОУ используются в большом количестве ге­нераторы тока, которые требуют токозадающих напряжений, то зна­чительная часть транзисторов всей схемы предназначена для построе­ния многоуровневого стабилизатора напряжения. Схема стабилиза­тора выполнена на транзисторах VTJ1 — VT25 и построена в виде многокаскадного генератора тока.

На рис. 1.225 показана амплитудно-частотная характеристика. Изменения максимального выходного напряжения от частоты пред­ставлены на рис. 1.226. Зависимости коэффициента ослабления син­фазного входного напряжения, входного тока, разности входных то­ков и напряжения смещения от напряжения питания представлены на рис. 1.227 — 1.230. Изменения относительной скорости нарастания выходного напряжения и максимального выходного напряжения от напряжения питания показаны на рис. 1.231, 1.232. Зависимость ско­рости нарастания выходного сигнала, коэффициента ослабления син­фазного выходного напряжения, входного тока и разности входных токов от температуры показаны на рис. 1.233 — 1.236.



                                                                                                          Рис. 1.224



Основная схема включения ОУ показана на рис. 1.237. Коэффи­циент усиления схемы Kу.« = 10. Здесь конденсатор коррекции Ск=3-10 пФ; а С1=3 — 10 пФ для всех значений Ky.u подбирается из условия C1=(R1/R2)CBX, где Свх= 3 — 30 пФ определяется эксперимен­тально, R1=510 Ом, R3-5.1 кОм, R2=R1R3/(R1+R3).



       Рис. 1.225                    Рис. 1.226                    Рис. 1.227                    Рис. 1.228

 
   


       Рис. 1.229                    Рис. 1.230                    Рис. 1.231                    Рис. 1.232



       Рис. 1.233                    Рис. 1.234                                Рис. 1.235                    Рис. 1.236



       Рис. 1.237

Микросхема К154УДЗ. Электри­ческая схема ОУ приведена на рис. 1.238. На входе усилителя вклю­чены два эмиттерных повторителя на транзисторах VT10 и VT13, на­грузками которых являются генера­торы тока на транзисторах УТ15 и VT17. С выходов эмиттерных повто­рителей сигнал подается на диффе­ренциальный усилитель на транзисторах VT11 и VT12-. По постоян­ному току эти транзисторы питаются от генератора тока на тран­зисторе VT16. В коллекторе транзисторов VT11 и VT12 включена комбинированная нагрузка на транзисторах VT,6, VT7 и VT8, VT9. Эти транзисторы устанавливают постоянное напряжение на кол­лекторах дифференциальной пары. Постоянство напряжения обес­печивается сложным стабилизатором на транзисторах VT1 — VT5. Этот стабилизатор создает несколько уровней напряжения, которые подаются на разные точки схемы: базы транзисторов VT15 — VT17, базу транзистора VT14, базы транзисторов VT6 и VT7, базы тран­зисторов VT8 и VT9.

Нагрузкой транзисторов VT8 и VT9 являются генераторы тока на транзисторах VT18, VT19 и VT21, которые обеспечивают большое эквивалентное сопротивление. С этого каскада сигналы снимаются через два повторителя (VT21 и VT23). Далее сигнал проходит через VT26, VT27 и VT30, которые предназначены для усиления и формирования порогового напряжения, необходимого для открывания VT28 и VT29 выходного эмиттерного повторителя.



На рис. 1.239 приведена амплитудно- частотная характеристика. Зависимость максимального выходного напряжения от частоты при­ведена на рис. К240. Зависимости коэффициента усиления, коэффи­циента ослабления синфазного входного напряжения, входного тока и разности входных токов от напряжения питания показаны на рис. 1.241 — 1.244. Влияние напряжения питания на максимальное выходное напряжение, на максимальное синфазное входное напряже­ние, на напряжения смещения и относительную скорость нараста­ния выходного сигнала приведены на рис. 1,245 — 1.248. Влияние тем­пературы на входной ток и на разность входных токов проиллюстри­ровано на рис. 1.249 и 1.250.

                     


                                           Рис. 1.238                                                                    Рис. 1.239



       Рис. 1.240                    Рис. 1.241                                Рис. 1.242                    Рис. 1.243



       Рис 1.244                                 Рис 1.245                     Рис. 1.246                    Рис. 1.247



       Рис. 1.248                                Рис. 1.249                                Рис. 1.250



       Рис. 1.251                    Рис. 1.252

Схема включения корректирующего конденсатора и балансирую­щего потенциометра Rб приведена на рис. 1.251. При использовании усилителя в схеме повторителя сигналов (рис. 1.252) необходимо применять элементы следующих номиналов: С1=3 — 10 пФ (емкость коррекции), Сн=50 пФ, R1 = 10 кОм, R3=10 кОм, R2=R1RUI(R1 + + R3), Rн=2 кОм, Rб=10О кОм (балансирующий потенциометр), Ск = 3 — 10 пФ (емкость частотной коррекции).

 



два эмиттерных повторителя на транзисторах


Микросхема К157УД1. На входе схемы ОУ (рис. 1.253) два эмиттерных повторителя на транзисторах VT2 и VT7, нагрузкой которых являются генераторы тока на транзисторах VT1 и VT9. Да­лее следует дифференциальный усилитель на транзисторах VT3 и VT6, в коллекторах которых включен трансформатор тока на тран­зисторах VT4 и VT8. Выходной сигнал дифференциального усилителя поступает на повторитель — транзистор VT15. С повторителя сигнал приходит на усилитель на транзисторе VT16. Нагрузкой этого тран­зистора является генератор тока на транзисторе VT17. С коллектора транзистора VT16 сигнал поступает на повторитель, в эмиттерной це­пи которого включены транзисторы VT20 и VT21. На этих транзисто­рах формируется напряжение, которое уменьшает порог открывания выходного составного повторителя на транзисторах VT25, VT26 и VT27, VT2&. Для защиты усилителя от перегрузок по выходу служат транзисторы VT22 — VT24, которые открываются напряжением, сфор­мированным на резисторах R1-2 и R15, при критических выходных токах. Схема на транзисторах VT11 — VT13 служит стабилизатором опорного напряжения для транзисторов VT1, VT5, VT9 VT10 VT17 и VT18.

На рис. 1.254 приведена амплитудно-частотная характеристика. Изменение максимального выходного сигнала от частоты показано на рис. 1.255. Влияние напряжения питания на коэффициент усиления и на потребляемый ток показано на рис. 1.256 и 1.257. Изменение коэф­фициента усиления от температуры приведено на рис. 1.258. Зависи­мость входного тока от напряжения питания изображена на рис. 1.259. Влияние температуры на разность входных токов пока­зано на рис. 1.260. Основная схема включения ОУ приведена на рис. 1.261.



                                           Рис. 1.253                                                        Рис. 1.254



       Рис. 1.255                                Рис. 1.256                    Рис. 1.257                    Рис. 1.258

              
    


       Рис. 1.259                                Рис. 1.260                    Рис. 1.261



Микросхема К157УД2. Микросхема состоит из двух ОУ. Ее элек­трическая схема представлена на рис. 1.262. Рассмотрим работу од­ного ОУ. Входной дифференциальный каскад построен на транзисто­рах VT3 и VT4. В эмиттерах включен генератор тока на транзисторе VT2, а в коллекторах — схема трансформатора тока, обеспечиваю­щая большое эквивалентное сопротивление. Выходной сигнал сни­мается с коллектора транзистора VT7 и.подается на эмиттерный повторитель на транзисторе VT24. Далее сигнал поступает в базы транзисторов VT25 и VT26, в коллекторных цепях которых включен трансформатор тока на транзисторах VT17 и VT18. Выходной сиг-нал с коллекторов транзисторов VT18 и VT20 подается через эмит-терные повторители на транзисторы VT18 и VT27 на выход. Между базами транзисторов VT19 и VT27 включена мостовая схема (тран­зисторы VT20 — VT23), которая выполняет двойную роль: во-первых, она создает пороговое напряжение для выходных транзисторов, а во-вторых, при критических выходных токах эти транзисторы откры­ваются и соединяют коллектор транзистора VT25 с выходом. Мостовая схема также контролирует уровень сквозного тока, протекающе­го через транзисторы VT19 и VT27.

       


                               Рис. 1.262                                                                    Рис. 1.263

 


                   Рис. 1.264                    Рис. 1.265                    Рис. 1.266                    Рис. 1.267



       Рис. 1.268                                Рис. 1.269

Для стабилизации ОУ по постоянному току е интегральной мик­росхеме существует общий каскад, в котором формируется эталон­ный ток, определяющий смещение токозадающих цепей. В истоке транзистора VT8 устанавливается напряжение, которое определяет ток в транзисторах УТ5 и VT10. Ток этих транзисторов формирует на транзисторах VT1 и VT16 эталонное напряжение, -поступающее в генераторы тока ОУ.

Амплитудно-частотные характеристики приведены на рис. 1.263. Зависимость максимального выходного напряжения от частоты по­казана на рис. 1.264.Изменения коэффициента усиления и потреб­ляемого тока от напряжения питания приведены на рис. 1.265 и

l.266. Влияние напряжения питания на входной ток показано на рис. 1.267, а изменение входного тока от температуры — на рис. 1.268. На рис. 1.269 приведена основная схема включения интегральной микросхемы.

 



является наиболее простым из всех


Микросхема К140УД1. Операционный усилитель К140УД1 (рис. 1.5) является наиболее простым из всех существующих подоб­ных устройств. Первый каскад состоит из дифференциальной тран­зисторной пары VT1, VT2, которая питается от генератора тока на транзисторе VT3. Температурная стабилизация тока осуществляется транзистором VT4. Второй каскад на транзисторах VT5 и VT6 гальванически связан с выходами первого. На выходе усилителя стоят два эмиттерных повторителя (VT7 и VT9), а транзистор VT8 осуществляет сдвиг уровня постоянного напряжения на выходе. Операционный усилитель требует внешних корректирующих цепей, устраняющих самовозбуждение на частотах. 2 — 10 МГц. Из всех существующих интегральных микросхем ОУ К140УД1 имеют отно­сительно низкий уровень шума.

Операционные усилители этой серии выпускаются двух типов, рассчитанных на различные питающие напряжения: К140УД1А — на 6,3 В (Pпот = 45 мВт) и К140УД1Б — на 12,6 В (Рпот = -170 мВт).

Подключение корректирующих элементов осуществляется меж­ду контактами 1 и 12. Выбор номиналов корректирующих элементов зависит от реализуемого усиления, при этом ОУ обладает различной полосой пропускания (рис. 1.6). Минимальной нагрузкой усилителя является Ra mtn = 5 кОм и Си тах = 50. пФ. Фазовая характеристика каскада с граничной частотой 500 кГц показана на рис. 1.7. В зави­симости от амплитуды входного сигнала наблюдается изменение по­лосы частот. Эти изменения проиллюстрированы на рис. 1.8 для двух значений Uах. Важным параметром ОУ является зависимость входного тока от температуры (рис. 1.9). Разность входных токов зависит от температуры по аналогичному закону (рнс. 1.10). Вход­ное сопротивление микросхемы также является функцией темпера­туры (рис. 1.11). Важным параметром служит нагрузочная способ­ность ОУ, которая проиллюстрирована в виде зависимости UBЫХ = = f(Uвx) для четырех значений Rн (рис. 1.12). При сопротивлении нагрузки более 5 кОм выходные характеристики усилителя меняют­ся незначительно.
Последней приведенной зависимостью является изменение напряжения шума от полосы пропускания (рис. 1.33).

Рассмотрим наиболее характерные схемы включения К140УД1 Операционный усилитель можно применять в схеме инвертирующе­го усилителя (рис. 1.14). Коэффициент усиления усилителя равен Kу.м = R2/R1 при RВх = R1. Неинвертирующий усилитель (рис. 1.15) имеет Kу.и = 1+ (R2/R1) и Rвх=R3. Разновидность схемы неинвер­тирующего усилителя показана на рис. 1.16. В этой схеме корректи­рующий конденсатор включен между контактами 9 к 12. Данная коррекция позволяет в три раза расширить полосу частот усилителя. В двух следующих схемах, являющихся усилителями переменного напряжения, некоторые резисторы заменяются на конденсаторы (рис. 1.17 и 1.18). На рис. 1.17 изображен усилитель с коэффициен­том усиления напряжения Kу.и = 40 дБ и fн= l/2пR1С1 = 16 Гц, а на рис. 1.18 усилитель имеет Kу.и = 70 дБ и fH==l кГц. Коэффици­ент усиления напряжения следующего усилителя (рис. 1.19) можно регулировать, меняя соотношение между сигналами, которые по­ступают на его входы. При равенстве сигналов на входах усилителя выходной сигнал равен нулю.

 
 


Рис. 1.5                                                       Рис. 1.6                                    Рис. 1.7

 
 


Рис. 1.8                                           Рис. 1.9                                                Рис. 1.10

 
 


Рис. 1.11                                         Рис. 1.12                                  Рис. 1.13

 
 


Рис. 1.14                                         Рис. 1.15                                  Рис. 1.16

 
 


Рис. 1.18                                         Рис. 1.17                      Рис. 1.19

              


Рис. 1.20                                                     Рис. 1.21

Меняя сопротивление резистора R4, . можно регулировать коэффициент усиления. При изменении сопро­тивления резистора R4 от нуля до максимального значения коэффи­циент усиления меняется от нуля до R2/R1, так как Kу.u =-R2lR1. Входное сопротивление усилителя равно RBХ=R1/2 при R1 = Rз и R2 = R4.


На рис. 1.2. 0 показан способ включения интегральной мик­росхемы, при котором ОС подается с части сопротивления нагрузки. При этом

Ky.U = -[(R2/Rl)+(R3/R4) + (R2R3/R1R4)],

а входное сопротивление равно Rz-a — Rs.

Балансировка усилителя для получения нулевого выходного на­пряжения может быть произведена с помощью потенциометра, включенного между контактами 7 и 12, как показано на рис. 1.21. Если вместо потенциометра применить терморезистор, то создается возможность стабилизации усилителя в широком диапазоне темпе­ратур.

Микросхема К140УД2. Операционный усилитель КНОУД2 яв­ляется усовершенствованием усилителя К140УД1 (рис.- 1.22). Схема ОУ состоит из пяти гальванически соединенных каскадов. Первые два каскада представляют собой дифференциальные усилители с эмиттерными повторителями на входах. Для компенсации темпе­ратурного изменения входных токов в них применены транзисторы VT5 и- VT12 в диодном включении. Третий каскад на транзисторах VT14 и VTJ5 является схемой сдвига уровня постоянного напряже­ния. Транзистор VT17 в эмиттерной цепи транзистора VT15 пред­ставляет собой термостабилизированный коллекторным переходом транзистора VT16 генератор тока. Емкость диодов вместе с резисто­рами в эмиттерах транзисторов VT14 и VT15 образуют цепи, ком­пенсирующие фазовый сдвиг сигнала на емкости коллекторного пе­рехода транзистора VT17. Каскад на транзисторе VT18 является усилителем с общим эмиттером (ОЭ).

 


                   Рис. 1.22                                                                                  Рис. 1.23

             
            


       Рис. 1.25                                  Рис. 1.24                                  Рис. 1.26

Выходной каскад состоит из транзисторов VT19 — VT22 и рабо­тает в режиме В. При поступлении на базу транзистора VTJ8 от­рицательной полуволны сигнала напряжение, выделенное на его коллекторном резисторе, открывает транзисторы VT23, VT24 и ток транзистора VT24 протекает через нагрузку и через транзистор VT20 в диодном включении.


Напряжение на транзисторе VT20 уве­ личивает ток транзистора VTJ9, что приводит к уменьшению напря­жения нз базе транзистора VT21. Транзисторы VT21 и VT22 закры­ваются и не влияют на прохождение сигнала. При поступлении на базу транзистора VT18 положительной полуволны сигнала транзи­сторы VT21 и VT22 открываются, а транзисторы VT23 и VT24 за­крываются.

Схемы включения микросхемы показаны на рис. 1.23, 1.24. На рис. 1.23 изображен повторитель сигналов, а усилитель, изображен­ный на рис. 1.24, имеет максимальный коэффициент усиления. Для балансировки усилителя можно воспользоваться любой из схем, показанных на рис. 1.25, 1.26.

Микросхема К140УД5. Операционный усилитель К.140УД5 (рис. 1.27) по своим характеристикам занимает промежуточное по­ложение между аналогичными по назначению усилителями К140УД1 и К140УД2. Наличие высокоомного входа приближает его к интег­ральной микросхеме К140УД2, а по коэффициенту усиления, коррек­тирующим цепям и частотным свойствам он близок к усилителю КНОУД1. Выводы с промежуточных точек схемы расширяют его возможности. Интегральная микросхема имеет дифференциальный выход со второго каскада, что позволяет соединять последовательно два и большее число каскадов. Кроме того, дополнительные выводы расширяют возможности балансировки интегральной микросхемы.



Рис. 1.27

Частотные характеристики микросхемы для различных коэффи­циентов усиления показаны на рис. 1.28. Амплитуда неискаженного выходного сигнала, как показано на рис. 1.29, нелинейно зависит от сопротивления нагрузки. При этом графики зависимости выходно­го напряжения положительной и отрицательной полярностей имеют различный наклон в зависимости от питающего напряжения (рис. 1.30). От питающего напряжения зависит и коэффициент .уси­ления, причем для разных входов получаются разные зависимости, как показано на рис. 1.31. Изменения входного тока, разности вход­ных токов и смещения входного напряжения от питающего напряже­ния показаны на рис. 1.32 — 1.34.



Для стабилизации ОУ при различных температурах необходимо учитывать изменения входного тока. Зависимость входного тока от температуры показана на рис. 1.35. Разность входных токов меняется от температуры по аналогичному закону, а абсолютные значения раз­ности в 10 раз меньше входных токов.

Схема включения ОУ показана на рис. 1.36. Относительные амп­литудно-частотные характеристики микросхемы при различных схе­мах включения показаны на рис. 1.37 при входном сигнале 1 мВ.

Для балансировки усилителя можно применить три схемы. Схема рис. 1:38 смещает рабочую точку усилителя преимущественно в сто­рону положительных напряжений, а схема рис. 1.39 — в сторону от­рицательных напряжений. На рис. 1.40 балансировка осуществляется в сторону любой полярности выходного напряжения. Диапазон регу­лировки в этой схеме значительно меньше, чём в двух предыдущих.

              
     


       Рис. 1.28                                              Рис. 1.29                                  Рис. 1.30

  


       Рис. 1.31                                  Рис. 1.32                                  Рис. 1.33

  
 
 


       Рис. 1.34                                  Рис. 1.35                      Рис. 1.36                      Рис. 1.38

             
      


                   Рис. 1.37                                  Рис. 1.39                      Рис. 1.40

                      


                   Рис. 1.41                                                                                              Рис. 1.42

 
 
 


       Рис. 1.43                      Рис. 1.44                      Рис. 1.45                                  Рис. 1.46



Рис. 1.47

Микросхема К140УД6. Операционный усилитель (рис. 1.41) име­ет внутреннюю частотную коррекцию. На входе использован составной эмиттерный повторитель на транзисторах VT2 VT3 и VT9 VT10. В эмиттеры транзисторов VT2 и VT9 включены генераторы-тока на транзисторах VT6, и VT12. Коллекторный ток этих транзисто­ров определяется напряжением в базах, которое снимается с дели­теля на транзисторах VT13 и VT14 с соответствующими, резистора­ми.


Нагрузкой эмиттерных повторителей VT3 и VT10 являются ге­ нераторы токов на транзисторах VT5 и VT11. Ток этих транзисто­ров задается транзистором VT4. Ток транзисторов VT5 и VT11 можно менять внешним резистором, который подключается к выво­дам 1 и 5.

Выходной сигнал с эмиттера транзистора VT10 подается на усилительный каскад, который обеспечивает общий коэффициент усиления интегральной микросхемы. Нагрузкой транзистора VT10 является генератор тока на транзисторе VT17. Сигнал с эмиттера транзистора VT15 подается в базу усилительного транзистора VT20, в коллектор которого включен транзистор VT18, работающий в ди­намическом режиме. Противофазные сигналы, снимаемые с коллек­торов транзисторов VT17 и VT20, подаются на составной выходной эмиттерный повторитель (транзисторы VT24 и VT27). Для защиты интегральной микросхемы от перегрузок включены транзисторы VT21. VT22, VT25, VT26.

Операционные усилители К140УД6 выпускают двух типов: К140УД6А и К140УД6Б. Каждый тип имеет свою зависимость выход­ного сигнала от сопротивления нагрузки (рис. 1.42). Относительные изменения напряжения смещения от температуры показаны на рис. 1.43. Зависимость от температуры входных токов показана на рис. 1.44, а разности входных токов — на рис. 1.45. Зависимость об­щего коэффициента усиления от питающего напряжения приведена на рис. 1.46. Для балансировки ОУ можно использовать схему вклю­чения, приведенную на рис. 1.47.

Микросхема К140УД7. Схема ОУ приведена на рис. 1.48. Вход­ной сигнал подается в базы транзисторов VT2 и VT3. В эмиттерах этих транзисторов включены динамические нагрузки, выполненные на транзисторах VT4 и VT5 проводимости типа р-n-р. Базовый по­тенциал транзисторов VT4, VT5, а следовательно, и потенциалы эмиттеров транзисторов VT2 и VT3 определяются делителем на тран­зисторах VT9 и VT10, смещение на которые обеспечивается транзи­сторами VT1 и VT12 в диодном включении.

Разностный сигнал при подаче входного сигнала на выводы 2 и 3 выделяется на коллекторном выводе транзистора VT5. Нагруз­кой транзисторов VT4 и VT5 является схема «токовое зеркало», по­строенная на транзисторах VT6 — VT8. Постоянное напряжение на коллекторных выводах транзисторов VT5 и VT8 определяется то-ком через эти транзисторы.


Этот ток можно регулировать подключением внешнего резистора к-контактам 1 и 5.

Сигнал с коллектора транзистора VT5 подается на усилитель­ный каскад с большим. входным сопротивлением на транзисторах VT13 и VT16. Коллекторной нагрузкой транзистора VT16 является генератор тока на транзисторе VT15. Ток через транзистор VT15 задается через три токовых трансформатора, построенных по схеме «токовое зеркало» на транзисторах VT10 — VT12.



Рис. 1.48

С коллектора транзистора VT16 сигнал поступает на элшттерный повторитель (транзистор VT19), нагрузкой которого также является генератор тока. Транзисторы VT17 и VT18 служат для уменьшения порога открывания выходных транзисторов VT21 и VT24. Для за­щиты интегральной микросхемы от перегрузки включены транзисто­ры VT22 и VT23.

Описанная схема обладает удовлетворительными техническими характеристиками для редпения многих практических задач. На рис. 1.49 приведена зависимость напряжения шума на выходе ОУ от сопротивления генератора, а на .рис. 1.50 — спектральная плот­ность шумов как функция частоты. Частотная характеристика усили­теля показана на рис. 1.51, а зависимость скорости нарастания вы­ходного сигнала от питающего напряжения — на рис. 1.52. Зависи­мость коэффициента усиления усилителя от частоты приведена на рис. 1.53. Температурная зависимость входного сопротивления, вход­ных токов и разности входных токов, напряжения смещения показа­ны на рис. 1.54, 1.55 и 1.56. Зависимость выходного напряжения ОУ от сопротивления нагрузки показана на рис. 1.55. При нагрузках бо­лее 2 кОм изменения выходного напряжения не наблюдается. Для Rн = 2 кОм амплитуда выходного напряжения линейно зависит от питающего напряжения (рис. 1.58). Так же линейно от питающего напряжения зависит и коэффициент усиления ОУ (рис. 1.59).

Типичная схема включения усилителя показана на рис. 1.60. Вы­бор емкости конденсатора для различных значений Rr необходимо проводить в соответствии со следующими данными: при Rr, равных 0,1: 1; 10 и 100 кОм Ск соответственно равны 0,1; 0,01; 0,001; 0,0001 мкФ.


Для получения скорости нарастания выходного сигнала до 20 В/мкс необходимо включить конденсатор Ск емкостью 70 пФ между выводами 2 и 8.

Микросхема К140УД8. Операционный усилитель (рис. 1.61) име­ет на входе полевые транзисторы VT3 и VT4. В истоках этих транзисторов включен генератор тока на транзисторе VT2, а в сто­ках — два транзистора VT6 и VT7, стабилизирующие режим работы дифференциальной пары. Нагрузкой транзисторов VT6 и VT7 явля­ется схема «токовое, зеркало». Если к контактам 2 и 8 подключить внешний потенциометр, то с его помощью можно регулировать постоянный уровень на выходе. С коллектора транзистора VT10 сиг­нал через эмиттерный повторитель на транзисторе VT12 поступает в усилительный каскад с большим входным сопротивлением на со­ставном транзисторе, включающем транзисторы VT20 и VT2f. С коллекторов этих транзисторов сигнал подается на выход через составной эмиттерный повторитель. Положительная полярность сиг­нала проходит через транзистор VT16, а отрицательная — через транзисторы VT22 и VT23. Для защиты микросхемы от короткого замыкания по выходу служат транзисторы VT18 и VT19. В схеме применена внутренняя коррекция, что обеспечивает усилителю устойчивую работу без внешних элементов.

Динамические характеристики усилителя — частота среза в ре­жиме малого сигнала fcp и скорость нарастания выходного сигнала vu вых, зависимости которых от Uп приведены на рис. 1.62 и 1.63, — находятся в обратной пропорциональной зависимости от значения корректирующей емкости. Эти параметры связаны соотношением

Vu выx= 1,26 Rfср.

 
 
 


       Рис. 1.49                                  Рис. 1.50                      Рис. 1.51                      Рис. 1.52

           
     
 


       Рис. 1.53                                  Рис. 1.54                      Рис. 1.55                      Рис. 1.56

 


       Рис. 1.57                      Рис. 1.58                      Рис. 1.59                      Рис. 1.60

 
 
 


                   Рис. 1.61                                  Рис. 1.62                      Рис. 1.63          Рис. 1.64



Использование во входном каскаде полевых .транзисторов позво­лило получить минимальный шумовой сигнал. Спектральная плот­ность шума приведена на рис. 1.64. Частотная характеристика усили­теля в режиме большого сигнала показана на рис. 1.65. Применение практически во всех каскадах усилителя источников постоянного тока смещения и динамических нагрузок позволило ослабить зависимость коэффициента усиления от напряжения питания, что хорошо видно на графике рис. 1.66.

Ряд зависимостей, характеризующих -основные параметры ОУ, привеДеры на следующих рисунках: зависимость максимальной ам­плитуды выходного сигнала от напряжения питания — на рис. 1.67; частотная характеристика усилителя в режиме малого сигнала — на рис. 1.68; нагрузочная характеристика — на рис. 1.69. Зависи­мость от температуры напряжения смещения и входного тока — на рис. 1.70 и 1.71, соответственно. Схема балансировки усилителя-, осуществляемая подключением потенциометра -между контактами 2 и 6, приведена на рис. 1.72.

Микросхема К140УД9. Операционный усилитель К140УД9 (рис. 1.73) является усовершенствованием интегральной микросхемы К140УД2. Изменения связаны с включением на входе ОУ ограничи­теля тока, построенного на транзисторах VT1 — VT4. Транзисторы VT1 и VT2 ограничивают положительную полярность входного сиг­нала, а транзисторы VT3 и VT4 — отрицательную полярность.

Входной сигнал поступает на дифференциальный усилитель, выполненный на транзисторах VT6 и VT17, перед которым включе­ны эмиттерные повторители на транзисторах VT5 и VT8. Режим по постоянному току входного каскада определяется генератором тока на транзисторе VT10 (VT9). Выходной сигнал перього дифферен­циального усилителя поступает на второй, построенный по аналогич-. ной схеме, и далее на составной эмиттерный повторитель на тран-. зисторах VT22 — VT25. Каждый повторитель питается своим генера­тором тока (транзисторы VT26 и VT27). Транзистор VT27 выпол­няет также роль повторителя, с выхода которого сигнал поступает на усилительные каскады на транзисторах VT42 и VT43. На выход интегральной микросхемы сигнал поступает через транзистор VT38, который усиливает его по мощности и инвертирует полярность.


Остальные транзисторы выходного каскада выполняют функции стабилизации режима схемы по постоянному току и защиты интег­ральной микросхемы от короткого замыкания.

Интегральная микросхема имеет частичную внутреннюю компен­сацию с помощью конденсаторов С1 и С2. Корректирующий конден­сатор, включенный между контактами 8 и 11, имеет одинаковый но­минал как для усилителя с максимальным коэффициентом усиления (рис. 1.74), так и для повторителя (рис. 1.75). Балансировку усили­теля можно осуществить по схеме, приведенной на рис. 1.76.

Микросхема К140УД11. На входе ОУ (рис. 1.77) расположен дифференциальный каскад, построенный на транзисторах VT11 и VT12. Для увеличения входного сопротивления включены эмиттер­ные повторители на транзисторах VT10 и VT13. Оба входа повто­рителей объединены схемой защиты от перегрузок. Транзисторы VT1 и VT2 ограничивают входной сигнал положительной полярно­сти, а транзисторы VT3 и VT4 ограничивают отрицательную поляр­ность входного сигнала по входам 2, 3 микросхемы.

          
              
 

       Рис. 1.65                                              Рис. 1.66                                  Рис. 1.67

      
            


       Рис. 1.68                                              Рис. 1.69                                  Рис.1.70

                      


       Рис. 1.71                                              Рис. 1.72



Рис. 1.73

Эмиттерные повторители дифференциального каскада имеют в качестве нагрузки двухэмиттерный транзистор VT14, который упpaвляется постоянным напряжением, образованным на транзистор­но-резисторном делителе R8, R10 и VТ15. Через этот делитель про­текает постоянный ток транзисторов VT11 и VT12, который форми­руется генератором тока на транзисторе VT20. Ток генератора опре­деляется напряжением в базе, которое формируется на транзисто­рах VTI6 — VT19, причем на VT16 формируется опорное напряже­ние, транзисторы VT17 и VT18 являются генераторами тока, а VT19 работает как повторитель постоянного напряжения.



В коллекторной цепи входного дифференциального каскада в качестве нагрузки использованы генераторы тока на транзисторах УТ5 и VT6, которые при совместной работе образуют схему транс­форматора тока. Между коллекторами транзисторов VT11 и VT12 включен ограничитель сигнала на VT8 и VT9. Выходной сигнал диф­ференциального каскада постулает на два усилителя на транзисто­рах VT21 и VT22. В коллекторах этих транзисторов включены гене-.раторы ток.а (VT27 и VT28). С коллектора транзистора VT27 через эмиттерный повторитель на транзисторе VT26 сигнал, поступает на эмиттерный повторитель на транзисторе VT29 и далее — в базу транзисторов VT31 и VT38. Через транзисторы VT31 и VT25 сигнал поступает в базу VT32. Генератор тока на транзисторе VT23 явля­ется нагрузкой для VT25. Таким образом, на йыход интегральной микросхемы сигнал поступает через два эмиттерных повторителя, транзисторы VT32 и VT37. Для защиты микросхемы от перегрузок служат транзисторы VT33 — VT35, которые открываются и уменьша­ют выходной сигнал, когда через резисторы R21 и R23 протекает значительный ток.

Основные функциональные зависимости параметров микросхемы представлены на рисунках. На рис. 1.78 показана амплитудно-частот­ная характеристика, а на рис. 1.79 — изменение амплитуды макси­мального выходного сигнала от частоты. Влияние выходного тока на выходное напряжение изображено на рис. 1.80. Частотная зависи­мость приведенной ко входу ЭДС шума показана на рис. 1.81. Влияние напряжения питания на потребляемый ток при различных температурах представлено на рис. 1.82. Произведение коэффициента усиления, на полосу пропускания и входной ток зависят от темпера­туры: Эти зависимости приведены на рис. 1.83 и Г.84. Влияние диф­ференциального входного напряжения на входной ток показано на рис. 1.85. На рис. 1.86 приведена зависимость скорости нарастания выходного сигнала от температуры. Для увеличения скорости нара­стания фронта выходного сигнала до 150 В/мкс целесообразно при­менение коррекции с помощью элементов Cl, R3, как показано на схеме рис. 1.87.


На этой же схеме представлен вариант балансиров­ки ОУ с помощью резисторов R5 — R7. Схема на рис. 1.88 позволяет свести к минимуму время установления положительного выходного напряжения. До уровня 10 В выходной сигнал нарастает за О 8 мкс. Один из вариантов балансировки ОУ представлен на схеме рис. 1.89. При большой емкости нагрузки необходимо применять схему с развязкой выхода ОУ и нагрузки, которая показана на рис. 1.90. В устройствах, где необходимо иметь максимальную устой­чивость усилителя, когда требуется введение дополнительных ООС, целесообразно использовать схему перекомпенсации, приведенную на рис. 1.91. Включение ОУ в качестве повторителя, показано на рис 1.92, а усилителя — 1.93.

Микросхема К140УД12. На входе усилителя (рис. 1.94) исполь­зован сложный дифференциальный каскад, построенный по схеме OK — ОБ на транзисторах VT3, VT$ и VT4, VT6 с дополнительными Проводимостями. Нагрузкой входного каскада является схема . трансформатора тока на транзисторах VT7 и VT8. Подключение к контактам 1 и 5 внешнего потенциометра обеспечивает возмож­ность изменения постоянного напряжения на коллекторе транзисто­ра VT6. Этот потенциометр регулирует разбаланс токов, протекаю­щих через транзисторы VT5 и VT6. Одновременно стабилизируются токи входного каскада схемой стабилизатора разности токов на транзисторах VT2 и VT9, смещение на которые подается с транзи сторон VT1, VT10 и VT11. Общее изменение токов в дифференциаль­ном каскаде, осуществляемое регулировкой управляющего тока, протекающего через вывод 5 ОУ, приводит к изменению параметров ОУ от микромощных до параметров общего назначения. Сигнал с первого каскада подается в базу транзистора VT14. В эмиттер этого транзистора включены два генератора тока, транзисторы VT15 и VT17. С коллектора транзистора VT17 сигнал поступает на усилитель на транзисторе VT21, в цепи коллектора которого включе­ны генератор тока на транзисторе VT18 и два транзистора VT19 и VT20 в диодном включении. Эти транзисторы предназначены для создания напряжения смещения для выходных транзисторов VT24 и VT27, работающих в режиме повторителей сигналов.


Транзисторы VT25 и VT26 предназначены для защиты ОУ от перегрузок по вы­ходному сигналу.

      
       


       Рис. 1.74                      Рис. 1.75                      Рис. 1.76



                                           Рис. 1.77

             
         
      


       Рис. 1.78                      Рис. 1.79                                  Рис. 1.80                      Рис. 1.81

  
  


       Рис. 1.82                      Рис. 1.83                      Рис. 1.84                      Рис. 1.85



       Рис. 1.86                                  Рис. 1.87                      Рис. 1.88                      Рис. 1.89



       Рис. 1.90                                  Рис. 1.91          Рис. 1.92                      Рис. 1.93

       


                               Рис. 1.94                                                                      Рис. 1.95

                        


Рис. 1.96                                                     Рис. 1.97

Выбор основных параметров ОУ можно Осуществить с помощью характеристик, представленных ниже. На рис. 1.95 представлена за­висимость управляющего тока от сопротивления резистора, подклю­ченного между выводом 8 интегральной микросхемы и отрицатель­ным полюсом источника питания. При изменении управляющего тока меняется входной ток. Эта зависимость показана на рис. 1.96. От управляющего тока зависит также общий коэффициент усиления ин­тегральной микросхемы (рис. 1.97). и разность входных токов (рис. 1.98). При использовании микросхемы в усилительных устрой­ствах следует обращать внимание на зависимость произведения коэф­фициента усиления на полосу пропускания от управляющего тока (рис. 1.99),

От управляющего тока и от напряжения питания зависит двой­ной размах выходного сигнала (рис. 1.100 и 1.101). Зависимость ско­рости нарастания выходного напряжения от управляющего тока при­ведена на рис. 1.102. Графики, описывающие зависимость от управ­ляющего тока приведенной ко входу ЭДС шумов и входного сопро­тивления, представлены на рис. 1.103 и 1.104.


соответственно. Воз­можности применения ОУ в различных схемах включения проиллю­ стрированы на следующих рисунках: рис. 1.105 — генератор гармони­ческого сигнала, где f0=1/2пRC (f0=1 кГц, если R=15 кОм, С = = 0,01 мкФ); рис. 1.106 — управляемый усилитель; рис. 1.107 — поло­совой фильтр (fo=l кГц при С=0,01 мкФ); рис. 1.108 — усилитель с большим входным сопротивлением.

Микросхема К140УД13. Микросхема (рис. 1.109) построена на МОП-транзисторах и содержит следующие функциональные узлы: балансный последовательно-параллельный модулятор (VT4, VT5, VT7, VT.8),- двухкаскадный дифференциальный усилитель с непо­средственными связями (VT10 — VT29), демодулятор — параллель­ный ключ (VT9) и мультивибратор с одной времязадающей RС-це-пью (VT1 — VT3, VT6). Конденсатор времязадающей цепи включа­ется между выводами 7 и 8 интегральной микросхемы. Внешней цепочкой RфСф определяется верхняя граничная частота дифференци­ального усилителя fв.гр=1/2пRфСф; по уровню — 3 дБ и при Сф = =2,2 мкФ имеем fв.гр = 1 Гц. Частота мультивибратора выбирается, исходя из соотношения fв.гр=0,2 fM. Для широкого круга задач це­лесообразно выбирать fM в пределах 0,7 — 1,5 кГц или fM=l кГц. При увеличении модулирующей частоты с 1 до 10 кГц постоянное напряжение на выходе интегральной микросхемы линейно возраста­ет от 10 до 100 мкВ, а шумовой сигнал уменьшается от 100 до 30 НВ/р-2Гц. Полосу пропускания усилителя (рис. 1.110) можно ме­нять при выборе элементов схемы С1, С2 и Сф в соотношениях, приведенных в табл. 1.2.

 
 
 


       Рис. 1.98                      Рис. 1.99                      Рис. 1.100                    Рис. 1.101

 


       Рис. 1.102                    Рис. 1.103                    Рис. 1.104                    Рис. 1.105



          Рис. 1.106

Таблица 1.2

номер

кривой

С1, пФ

С2, мкФ

Сф, мкФ

Частота модуляции, кГц

Полоса пропускания. кГц

1

2400

0,1

0,15

1

1

2

750

0,03

0,047

3

3

3

240

0.01

0,015

10

10

4

75

30

47

30

30




При изменении напряжения питания наблюдается изменение ко­эффициента усиления в соответствии с графиком рис. 1.111. При этом напряжение питания по-разному влияет на положительные и отрицательные полярности выходного напряжения (рис. 1.112). Схе­ма включения интегральной микросхемы приведена на рис. 1.113.

Микросхема К140УД14. Электрическая схема ОУ приведена на рис. 1.114. Сложный входной дифференциальный каскад образуют пары транзисторов VT3. VT5 и VT4, VT6. Между базами входных транзисторов VT3 и VT4 включены ограничители входного сигнала на транзисторах VT1 и VT2. Плечи входного каскада построены по схеме ОЭ — ОБ, причем транзисторы VT5 и VT6 схемы с ОБ по по­стоянному току являются повторителями базового напряжения, что позволяет поддерживать постоянным коллекторное напряжение транзисторов VTZ и VT4 дифференциального каскада. Каскодное включение транзисторов входного каскада уменьшает входную ем­кость ОУ. Нагрузка входного каскада термостабилизирована тран­зисторами VT7 и VT8 в диодном включении. Рабочий режим вход­ного каскада определяет включенный в его эмиттерную цепь гене­ратор тока на транзисторе VT16. Напряжение на базе этого тран­зистора задается с каскада опорного напряжения, построенного на транзисторах VT12, VT13 и VT17. Снимается это напряжение через эмиттерный повторитель на транзисторе VT15.

Выходной сигнал дифференциального каскада подается на базы транзисторов VT18 и VI19, в коллекторной цепи которых включена схема трансформатора тока на транзисторах VT20 и VT21, обеспе­чивающая максимальное усиление каскада. Сигнал с коллектора VT19 через повторитель на транзисторе VT22 и VT23 поступает на базу транзистора VT25, а с коллектора этого транзистора сигнал положительной полуволны подается на базу выходного эмиттерно-го повторителя на транзисторе VT27. Отрицательная полуволна выходкого сигнала снимается с базы транзистора VT26 и через эмит-терный повторитель на транзисторе VT29 поступает на выход. Для защиты усилителя от перегрузок к выходу подключается транзи­стор VT28, который шунтирует выходное напряжение.


В схеме су­ ществует многоуровневый стабилизатор напряжения, определяющий работу усилителя по постоянному току. Стабилизатор построен на транзисторах VT9 — VT17.

                            


       Рис. 1.107                                                        Рис. 1.108

    


                                          Рис. 1.109                                                                    Рис. 1.110

   
           


       Рис. 1.111                                Рис. 1.112                                Рис. 1.113

 

Основные характеристики усилителя представлены на следую­щих рисунках. Зависимость коэффициента усиления и максимально­го выходного напряжения от частоты — на рис. 1.115 и 1.116. Зави­симость от частоты приведенного ко входу напряжения шума дана на рис. 1.117. На рис. 1.118 показано изменение напряжения смеще­ния от входного сопротивления. Зависимости максимального выход­ного напряжения, коэффициента усиления и потребляемого тока от напряжения питания даны на рис. 1.119 — 1.121. Напряжение смеще­ния, разности входных токов и коэффициента ослабления синфазного входного напряжения зависят от напряжения питания. Эти зависимости приведены на рис. 1.122 — 1.124. Температурные зависимости напряжения смещения, входного тока, разности входных токов и входного сопротивления локазаны на рис. 1.125 — 1.128. Влияние вы­ходного тока на выходное напряжение при различных температурах представлено на рис. 1.129. Зависимость выходного сопротивления от частоты показана на рис. 1.130.



                                                          Рис. 1.114



       Рис. 1.115                                Рис. 1.116                                Рис. 1. 1 17



       Рис. 1.118                                Рис. 1.119        Рис. 1.120                    Рис. 1.121

 


       Рис. 1.122                    Рис. 1.123        Рис. 1.124                    Рис. 1.125



       Рис. 1.126                                Рис. 1.127                    Рис. 1.128





       Рис. 1.129                    Рис. 1.130                                Рис. 1.131



       Рис. 1.132                                Рис. 1.133                    Рис. 1.134

       
                               


       Рис. 1.135                                Рис. 1.136                                            Рис. 1.137

Практические схемы включения усилителя, уменьшающие выход­ные шумы, приведены на рис. 1.131 — 1.133. Во всех схемах емкость корректирующего конденсатора должна выбираться из условия CK>R130 (пФ)/(R1 + R3). Кроме того, возможны и другие варианты коррекции усилителя, один из которых представлен на рис. 1.134. Коррекция в широкополосном повторителе показана на рис. 1.135, а усилитель с коэффициентом усиления Ky.u=10 и емкостной нагруз­кой требует схемы коррекции в соответствии с рис. 1.136. Для балан­сировки ОУ можно использовать схему рис. 1.137.



малым напряжением смещения, большим входным


Микросхема К153УД1. Операционный усилитель К153УД1 (рис. 1.138) характеризуется большим коэффициентом усиления на­пряжения, малым напряжением смещения, большим входным сопро­тивлением (200 кОм) и малым выходным сопротивлением 200 Ом. Усилитель имеет частоту единичного усиления не менее 1 МГц. По сравнению с ОУ КИОУД1 интегральная микросхема К153УД1 имеет более высокий уровень шума.

Входной каскад выполнен на транзисторах VT4 и VT15, Рабо­чий ток каскада задается транзистором VT6, а. для стабилизации его рабочей точки служит транзистор VTW. Нагрузкой входного каска­да являются резисторы R3 и R4, к которым подключен второй уси­лительный каскад на составных транзисторах VT2, VT3 и VT7, VT8.

Плечи второго диффе­ренциального каскада собраны по модернизи­рованной схеме Дарлинг­тона. С правого (по схе­ме) плеча второго ка­скада (VT7 и VT8) сиг­нал снимается на повто­ритель, собранный на транзисторах разного ти­па проводимости VT11 и VT12. Схема сдвига уровня при переходе к выходному каскаду реализована на транзи­сторе VT12. Третий (вы­ходной) каскад ОУ вы­полнен на транзисторе VTJ3 по схеме с ОЭ. Составной эмиттерный повторитель на транзи­сторах VT14 и VT15 обес­печивает малое выход­ное сопротивление уси­лителя:

Таблица 1.3

Номер кривой

Kу. и, дБ

С1, пФ

С2. пФ

R1, кОм

1

60

10

3

0

2

40

100

3

1,5

3

20

500

20

1,5

4

0

5000

250

1,5

Частотная характеристика интегральной микросхемы без ОС для различных корректирующих элементов, включенных по схеме рис. 1.148, показана на рис. 1.139. Значения корректирующих элемен­тов приведены в табл. 1.3.

На рис. 1.140 показаны характеристики для интегральной микро­схемы с ОС при тех же корректирующих элементах. Частотная ха­рактеристика интегральной микросхемы в режиме максимального выходного сигнала, приведена на рис. 1.141. При стабилизации рабо­ты усилителя в широком диапазоне температур необходимо учиты­вать температурные изменения параметров микросхемы.
Зависимость входного сопротивления от температуры показана на рис. 1.142. Из­менения от температуры входного тока, разности входных токов и напряжения смещения показаны на рис. 1.143 — 1.145. Влияние на­пряжения питания на коэффициент усиления микросхемы и на напря­жение смещения показано на рис. 1.146, 1.147.



Рис. 1.138

Частотная коррекция усилителя осуществляется с помощью цепочки R1, С1, подключенной между контактами 1, 8 интегральной микросхемы, как показано на рис. 1.148. В этом случае скорость на-, растания импульсного сигнала может доходить до 0,2 В/мкс. При коррекции усилителя прямой связью с помощью конденсатора С1, включение ОУ возможно двумя способами в соответствии с рис. 1.149, 1.150. В схеме рис. 1.150 коэффициент усиления падает до единицы на частоте около 3 МГц, что обеспечивает скорость на­растания 5 В/мкс (рис. 1.151). Если в качестве корректирующих кон­денсаторов взять С1=100 пФ и С2=20 пФ, то Kу.u=80 дБ. Коэффи­циент усиления микросхемы равномерен в полосе до 103 Гц, далее он падает с крутизной 12 дБ/октава до тех пор, пока не достигнет единицы на частоте 3 МГц.

Для повышения крутизны фронтов импульсных сигналов в схему возможно введение диода, как показано на рис. 1.152. Поскольку ин­тегральная микросхема обладает большим коэффициентом усиления, то при ее монтаже следует уделять большое внимание паразитным связям. Она должна быть хорошо развязана от источников питания. При работе усилителя на емкостную нагрузку, при емкости больше 100 пФ, следует применить развязывающий резистор (рис. 1.153).

На рис. 1.154 — 1.166 показаны различные схемы включения ОУ. Инвертирующий усилитель на рис. 1.154 имеет входное сопротивле­ние, равное R1. Коэффициент усиления определяется отношением Ky.u= — R2/R1. Для неинвертирующего усилителя на рис. 1.155 коэф­фициент усиления равен Ky.u = (R1+R2)/R1, а входное сопротивление определяется выражением Rвх=RвнКо/(1+R2/R1), где Rвн — сопро­тивление усилителя между контактами 2, 3, а Ко — статический ко­эффициент усиления интегральной микросхемы.





       Рис. 1.139                                Рис. 1.140                    Рис. 1.141        Рис. 1.142



       Риc. 1.143        Рис. 1.144        Рис. 1.145        Рис. 1.146                    Рис. 1.147



       Рис. 1.148                    Рис. 1.149                    Рис. 1 150



       Рис. 1.151                                Рис. 1.152                    Рис. 1.153



       Рис. 1.154                                Рис. 1.155                                Рис. 1.156



       Рис. 1.157                                Рис. 1.1.58                   Рис. 1.159



       Рис. 1.160                                Рис. 1.161                                Рис. 1.162



       Рис. 1.163                                Рис. 1.164                                Рис. 1.165



Рис. 1.166

Усилитель (рис. 1.156) имеет коэффициент усиления 40 дБ при 1 МГц, а усилитель на рис, 1.157 имеет граничную частоту 0,5 МГц. Повторители напряжения изображены на рис. 1.158 и 1.159. Включе­ние диода в схему на рис. 1.159 уменьшает нелинейные искажения. Для дифференцирования входного сигнала с частотами, ниже 20 Гц служит схема (рис. 1.160). Для сигналов с частотами более 2 кГц эта схема работает как интегратор. В качестве интегратора приме­няется схема рис. 1.161. Постоянная времени равна t=RlCl. Микро­схема может применяться в качестве компаратора (рис. 1.162). Чув­ствительность составляет 1 мВ. Для входного сигнала 10 мВ время нарастания выходного сигнала равно 5 мкс. Балансировка усилителя может осуществляться по схеме на рис. 1.163. Схемы рис. 1.164 — 1.166 позволяют балансировать усилитель без изменения режима входной цепи. Входное сопротивление этой схемы равно Rвх= =RвнKо/(1+R2/R1).

Микросхема К153УД2. В отличие от усилителя К153УД1 эта ин­тегральная микросхема (рис. 1.167) имеет дифференциальный кас­кад, построенный на эмиттерйых повторителях (VT5 и VT6). Наг­рузкой повторителей служат транзисторы VT7 и VT8, через которые протекает постоянный ток.


Генератором тока является транзистор V77. Напряжение на базе этого транзистора определяется источни­ком опорного напряжения на транзисторах VT3 и VT4 и поступает через повторитель на транзисторе VT2. Выходное напряжение пер­вого каскада снимается с коллектора транзистора VT11. Через пов­торитель на транзисторе VT13 сигнал подается на каскад с динами­ческой нагрузкой, транзисторы VT14 и VT15. Нагрузкой VT15 яв­ляется транзистор VT14. Далее сигнал проходит через составной эмиттерный повторитель на транзисторах VT19 и VT21. Для защиты от короткого замыкания служит резистор R14 и транзистор VT20.

Коррекция интегральной микросхемы осуществляется включени­ем конденсатора С=30 пФ между выводами 1, 8. Откорректирован­ный этим конденсатором ОУ имеет частотную характеристику, изоб­раженную на рис. 1.168. Спектральные плотности шумового напря­жения и тока ОУ показаны, на рис. 1.169, 1.170. Зависимость, изображенная на рис. 1.169, получена при сопротивлении генератора Rг=0, а зависимость рис. 1.170 — при RГ=300 кОм.



                               Рис. 1.167                                                        Рис. 1.168



       Рис. 1.169                                Рис. 1.170                    Рис. 1.171



       Рис. 1.172                                Рис. 1.173                                Рис. 1.174



       Рис. 1.175                    Рис. 1.176                    Рис. 1.177                    Рис. 1.178



       Рис. 1.179                                Рис. 1.180                    Рис. 1.181        Рис. 1.182



Рис. 1.183

Зависимость напряжения смещения от напряжения питания при различных температурах приведена на рис. 1.171. Зависимость вход­ного тока и разности входных токов от напряжения питания при различных температурах показана на рис. 1.172, 1.173. На рис. 1.174 изображена зависимость коэффициента усиления интегральной мик­росхемы от сопротивления нагрузки.

Коррекцию ОУ можно осуществить тремя способами, включая коррекцию одним конденсатором, упомянутую выше.


Однополюсная коррекция показана на рис. 1.175, прямая коррекция — на рис. 1.176, а двухполюсная — на рис. 1.177. Для однополюсной коррекции ем­кость конденсатора определяется из выражения C1>30R1/(R1+R2) пФ. Для двухполюсной коррекции емкость конденсатора С1 определяется аналогичным образом, что для однополюсной коррек­ции. Емкость конденсатора С2 определяется из выражения С2= 10 С1. Коррекция прямой связью требует С1 = 150 пФ, а емкость конденса­тора. С2 определяется выражением С2=1/2пR2fо, где f0=3 МГц. На рис. 1.178 представлены частотные характеристики для большого сиг­нала по трем способам коррекции: 1 — однополюсный, 2 — двухпо­люсный, 3 — коррекция прямой связью. Частотные характеристики интегральной микросхемы для трех способов компенсации без ОС приведены на рис. 1.179.

Балансировку выходного напряжения усилителя можно постро­ить способами, приведенными на рис. 1.180 и 1.181. При оптимизации усилителя по скорости переключения необходимо учитывать зависи­мость времени нарастания выходного напряжения от емкости коррек­тирующего конденсатора (рис. 1.182). При подаче на вход напряже­ния 30 мВ время нарастания выходного напряжения на 2 мВ меня­ется в зависимости от емкости и от коэффициента передачи цепи ООС в соответствии с графиком на рис. 1.183.

Микросхема К153УДЗ. Электрическая схема микросхемы К153УДЗ (рис. 1.184) незначительно отличается от схемы микросхе­мы К153УД1. Отличие заключается в предоконечном каскаде, где применен многоколлекторный транзистор. Это изменение позволило уменьшить напряжение смещения до 2 мВ. По этой же причине сред­ний температурный коэффициент изменения напряжения также уменьшается.

Частотная характеристика интегральной микросхемы с замкнутой обратной связью при различных корректирующих элементах показа­на на рис. 1.185. Номиналы корректирующих элементов показаны в табл. 1.4.

Для интегральной микросхемы с разомкнутой ОС частотные характе­ристики будут иметь вид, приведен­ный на рис. 1.186.


Переключательные свойства микросхемы характеризу­ются зависимостью полной амплиту­ ды выходного сигнала от частоты. Эта зависимость для различных кор­ректирующих элементов представле­на на рис. 1.187.

Для стабилизации режима рабо­ты интегральной микросхемы при из­менении температуры необходимо учитывать зависимость коэффициента усиления, входного тока и разности входных токов от температуры. Эти зависимости представ­лены на рис. 1.188 — 1.190.

Таблица 1.4

Номер кривой

R1,

кОм

с1,

пФ

С2. пФ

1

0

10

3

2

1,5

ио.

3

3

1,5

510

20

4

1,5

5100

200



       Рис. 1.184                                            Рис. 1.186



       Рис 1.187                     Рис. 1.188                                            Рис. 1.189



       Рис. 1.190                                Рис. 1.191                    Рис. 1.192

Схема включения интегральной микросхемы в режим повторите­ля показана на рис. 1.191. Балансировку микросхемы можно осуще­ствить с помощью потенциометра, подключенного к выводам 7 и 8 (рис. 1.192). Подключение потенциометра изменяет нагрузочное со­противление усилительного каскада на транзисторах VT7 и VT8.

Микросхема К153УД4. На входе микросхемы (рис. 1.193) стоит дифференциальный каскад с большими нагрузочными сопротивления­ми. Рабочий ток первого каскада задается генератором тока на транзисторе VT3. Напряжение на его базе создается за счет падения напряжения на транзисторе VT4 в диодном включении. Это же на­пряжение подается на базы других токозадающих транзисторов VT5, VT6 и VT9. Сигнал с первого каскада поступает на второй дифференциальный каскад на транзисторах VT13 и VT14, на входе которого находятся эмиттерные повторители на транзисторах VT12 и VT15. Эмиттерные повторители увеличивают входное сопротивление второго каскада. В коллектор транзистора VT14, с которого снимается сигнал на следующий каскад, включена динамическая на­грузка (транзистор VT8). Выходной каскад построен на транзисто­pax разного типа проводимости, VT25 и VT24. Транзистор VT26 контролирует сквозной ток, протекающий через эти транзисторы.



Частотные характеристики усилителя без OG приведены на рис 1.194 при различных параметрах элементов корректирующих це­пей На рис. 1.195 изображены характеристики усилителя с различ­ными коэффициентами, усиления. При термостабилизации усилителя необходимо учитывать зависимость напряжения смещения от температуры (рис. 1.196). Включение корректирующих элементов (табл. 1.5) показано на рис. 1.197. На рис. 1.198 изображена схема балансировки ОУ.

Микросхема К153УД5. На входе ОУ (рис. 1.199) помещен диф­ференциальный каскад на транзисторах VT1 и VT2, в эмиттеры ко­торых включен генератор тока на транзисторе VT3. Коллекторный ток этого генератора определяется опорным напряжением на тран­зисторе VT4 в диодном включении. Это напряжение устанавливается схемой «токового зеркала», собранной на транзисторах VT5, VT6 и VT9. Транзистор VT9 является генератором тока для второго диф­ференциального каскада, собранного на транзисторах VT10 и VT1J. В коллекторы этих транзисторов включен трансформатор тока, по­строенный на VT12 и VT13. Связь между первым и вторым диффе­ренциальными каскадами осуществляется через эмиттерные повто­рители (VT7 и VT15), нагрузкой которых служат генераторы тока на транзисторах VT8 и VT14.



                               Рис. 1.193                                                                    Рис. 1.194



       Рис. 1.195                                Рис. 1.196                    Рис. 1.197                    Рис. 1.198

Таблица 1.5

Номер кривой

Ку, и

RI, Ом

С1. нФ

R2, Ом

С2, нФ

1

104

104

0,05

2

103

470

1,0





3

102

47

10,0





4

10

27

47,0

270

1,5

5

1

10

47,0

39

22

Выходные противофазные сигналы второго дифференциального каскада поступают на выходной повторитель (VT24 и VT26) через два усилителя на транзисторах VT22 и VT19. Все остальные тран­зисторы предназначены для стабилизации постоянного рабочего то­ка выходных транзисторов VT24 и VT26. Переменный .сигнал вызы­вает одновременное открывание транзистора VT24 и закрывание транзистора VT26 или закрывание VT24 и открывание VT26. Реали­зация этого режима осуществляется установкой постоянного напря­жения на коллекторе транзистора VT16 и подачей рабочего сигнала через транзистор VT22. Противофазный рабочий сигнал проходит через транзистор VT19. Постоянное же напряжение устанавливается на эмиттере транзистора VTJ8. Оно отличается от постоянного на­пряжения предыдущего плеча на 1,4 В.


Остальные транзисторы (VT20, VT21 и VT23) предназначены для стабилизации режима транзистора VT26 по постоянному току. Транзистор VT25 защищает усилитель от перегрузок Для положительных полярностей рабочего сигнала.

Таким образом, ОУ имеет три усилительных каскада: два диффе­ренциальных и один яа транзисторе VT22. На рис. 1.200 приведена частотная характеристика усилителя. Для устранения самовозбуж­дения усилитель требует включения сложной внешней корректирую­щей цепи (рис. 1.201). Элементы этой цепи для различных коэффи­циентов передачи (рис. 1.202) выбираются из табл. 1.6.



Рис. 1.199

 
 


       Рис. 1.200                    Рис. 1.201                    Рис. 1.202

Таблица 1.6

Номер кривой

R1, Ом

R3. Ом

С1, пФ

С2, пФ

1

104

50

2

470



100



3

47



10000



4

27

270

50000

1500

5

10

390

50000

20000

 

Микросхема К153УД6. Электрическая схема интегральной микро­схемы К153УД6 (рис. 1.203) во многом похожа на электрическую схему микросхемы К153УД2. Отличие заключается в применении по­левого транзистора в стабилизаторе базового напряжения источника тока первого дифференциального каскада. Это позволило значитель­но уменьшить входной ток микросхемы до 75 нА (вместо 500 нА). Кроме того, уменьшен средний температурный коэффициент измене­ния разности входных токов до 0,2 нА/град (вместо 2 нА/град). . Общность электрических схем микросхем К153УД2 и К153УД6 позволяет применить одинаковые цепи коррекции. Частотные харак­теристики интегральной микросхемы с разомкнутой ОС для различ­ных способов коррекции показаны на рис. 1.204 (кривая 1 — одно­полюсная коррекция при С1 = 0; кривая .1' — однополюсная коррек­ция при С1= 30 пФ; кривая 2 — двухполюсная коррекция при С1 — =30 пФ и С2=300 пФ). Изменение максимальной амплитуды вы­ходного сигнала от частоты для различных способов коррекции по­казано на рис. 1.205, где кривая 3 — коррекция прямой связью.





                               Рис. 1.203                                                                    Рис. 1.204



       Рис. 1205                     Рис. 1.206                                Рис. 1.207

         


       Рис. 1.208                                            Рис. 1.209                    Рис. 1.210

Выходной ток микросхемы зависит от полярности выходного сигнала. На рис. 1.206 показаны кривые изменения выходного на­пряжения от тока в нагрузке при различных температурах. На рис. 1.207 показана зависимость фазы выходного сигнала от часто­ты: кривая 1 — С1 = 30 пФ; кривая 2 — С1 = 30 пФ, С2=300 пФ, R4=10 кОм; кривая 3 — С1=150 пФ, С2=7 пФ,

Спектральная плотность шума показана на рис. 1.208.

Балансировку микросхемы можно осуществить по двум схемам, приведенным на рис. 1.209, 1.210. В первой схеме балансировка про­исходит за счет изменения тока, протекающего через транзисторы выходного дифференциального каскада, а во второй схеме вводится дополнительная ООС между каскадами.